2022届数学一轮(文科)人教B版课时作业-第三章-导数及其应用-第3章-第1讲.docx
《2022届数学一轮(文科)人教B版课时作业-第三章-导数及其应用-第3章-第1讲.docx》由会员分享,可在线阅读,更多相关《2022届数学一轮(文科)人教B版课时作业-第三章-导数及其应用-第3章-第1讲.docx(3页珍藏版)》请在咨信网上搜索。
第1讲 导数的概念及运算 基础巩固题组 (建议用时:40分钟) 一、选择题 1.(2021·沈阳模拟)曲线y=x3在原点处的切线 ( ) A.不存在 B.有1条,其方程为y=0 C.有1条,其方程为x=0 D.有2条,它们的方程分别为y=0,x=0 解析 ∵y′=3x2,∴k=y′|x=0=0,∴曲线y=x3在原点处的切线方程为y=0. 答案 B 2.若曲线y=x4的一条切线l与直线x+4y-8=0垂直,则l的方程为 ( ) A.4x-y-3=0 B.x+4y-5=0 C.4x-y+3=0 D.x+4y+3=0 解析 切线l的斜率k=4,设y=x4的切点的坐标为(x0,y0),则k=4x=4,∴x0=1,∴切点为(1,1), 即y-1=4(x-1),整理得l的方程为4x-y-3=0. 答案 A 3.(2022·长春模拟)曲线y=xex+2x-1在点(0,-1)处的切线方程为 ( ) A.y=3x-1 B.y=-3x-1 C.y=3x+1 D.y=-2x-1 解析 依据导数运算法则可得y′=ex+xex+2=(x+1)ex+2,则曲线y=xex+2x-1在点(0,-1)处的切线斜率为y′|x=0=1+2=3.故曲线y=xex+2x-1在点(0,-1)处的切线方程为y+1=3x,即y=3x-1. 答案 A 4.已知f1(x)=sin x+cos x,fn+1(x)是fn(x)的导函数,即f2(x)=f1′(x),f3(x)=f′2(x),…,fn+1(x)=fn′(x),n∈N*,则f2 015(x)等于 ( ) A.-sin x-cos x B.sin x-cos x C.-sin x+cos x D.sin x+cos x 解析 ∵f1(x)=sin x+cos x,∴f2(x)=f1′(x)=cos x-sin x,∴f3(x)=f2′(x)=-sin x-cos x,∴f4(x)=f3′(x)=-cos x+sin x,∴f5(x)=f4′(x)=sin x+ cos x,∴fn(x)是以4为周期的函数,∴f2 015(x)=f3(x)=-sin x-cos x,故选A. 答案 A 5.(2022·陕西卷)如图,修建一条大路需要一段环湖弯曲路段与两条直道平滑连接(相切).已知环湖弯曲路段为某三次函数图象的一部分,则该函数的解析式为 ( ) A.y=x3-x2-x B.y=x3+x2-3x C.y=x3-x D.y=x3+x2-2x 解析 设三次函数的解析式为y=ax3+bx2+cx+d(a≠0),则y′=3ax2+2bx+c.由已知得y=-x是函数y=ax3+bx2+cx+d在点(0,0)处的切线,则 y′|x=0=-1⇒c=-1,排解B、D.又∵y=3x-6是该函数在点(2,0)处的切线,则y′|x=2=3⇒12a+4b+c=3⇒12a+4b-1=3⇒3a+b=1.只有A项的函数符合,故选A. 答案 A 二、填空题 6.(2021·珠海一模)若曲线y=ax2-ln x在点(1,a)处的切线平行于x轴,则a=________. 解析 y′=2ax-,∴y′|x=1=2a-1=0,∴a=. 答案 7.(2022·广东卷)曲线y=-5ex+3在点(0,-2)处的切线方程为__________________. 解析 由y=-5ex+3得,y′=-5ex,所以切线的斜率k=y′|x=0=-5,所以切线方程为y+2=-5(x-0),即5x+y+2=0. 答案 5x+y+2=0 8.(2022·江苏卷)在平面直角坐标系xOy中,若曲线y=ax2+(a,b为常数)过点P(2,-5),且该曲线在点P处的切线与直线7x+2y+3=0平行,则a+b的值是______. 解析 y=ax2+的导数为y′=2ax-,直线7x+2y+3=0的斜率为-.由题意得解得则a+b=-3. 答案 -3 三、解答题 9.已知曲线y=x3+. (1)求曲线在点P(2,4)处的切线方程; (2)求曲线过点P(2,4)的切线方程. 解 (1)∵P(2,4)在曲线y=x3+上,且y′=x2, ∴在点P(2,4)处的切线的斜率为y′|x=2=4. ∴曲线在点P(2,4)处的切线方程为y-4=4(x-2),即4x-y-4=0. (2)设曲线y=x3+与过点P(2,4)的切线相切于点A,则切线的斜率为y′|x=x0=x. ∴切线方程为y-=x(x-x0),即y=x·x-x+.∵点P(2,4)在切线上,∴4=2x-x+,即x-3x+4=0,∴x+x-4x+4=0, ∴x(x0+1)-4(x0+1)(x0-1)=0,∴(x0+1)(x0-2)2=0,解得x0=-1,或x0=2,故所求的切线方程为x-y+2=0,或4x-y-4=0. 10.设函数f(x)=ax-,曲线y=f(x)在点(2,f(2))处的切线方程为7x-4y-12=0. (1)求f(x)的解析式; (2)曲线f(x)上任一点处的切线与直线x=0和直线y=x所围成的三角形面积为定值,并求此定值. 解 (1)方程7x-4y-12=0可化为y=x-3, 当x=2时,y=.又f′(x)=a+,于是 解得故f(x)=x-. (2)设P(x0,y0)为曲线上任一点, 由y′=1+知曲线在点P(x0,y0)处的切线方程为y-y0=(1+)(x-x0),即y-(x0-)=(1+)(x-x0).令x=0,得y=-,从而得切线与直线x=0交点坐标为.令y=x,得y=x=2x0,从而得切线与直线y=x的交点坐标为(2x0,2x0). 所以点P(x0,y0)处的切线与直线x=0,y=x所围成的三角形的面积为S=|2x0|=6. 故曲线y=f(x)上任一点处的切线与直线x=0,y=x所围成的三角形面积为定值,且此定值为6. 力气提升题组 (建议用时:25分钟) 11.已知曲线y=,则曲线的切线斜率取得最大值时的直线方程为 ( ) A.x+4y-2=0 B.x-4y+2=0 C.4x+2y-1=0 D.4x-2y-1=0 解析 y′==,由于ex>0,所以ex+≥2=2(当且仅当ex=,即x=0时取等号),则ex++2≥4,故y′=≤-(当x=0时取等号).当x=0时,曲线的切线斜率取得最大值,此时切点的坐标为,切线的方程为y-=-(x-0),即x+4y-2=0.故选A. 答案 A 12.(2022·大连二模)过点A(2,1)作曲线f(x)=x3-3x的切线最多有 ( ) A.3条 B.2条 C.1条 D.0条 解析 由题意得,f′(x)=3x2-3,设切点为(x0,x-3x0),那么切线的斜率为k=3x-3,利用点斜式方程可知切线方程为y-(x-3x0)=(3x-3)(x-x0),将点A(2,1)代入可得关于x0的一元三次方程2x-6x+7=0.令y=2x-6x+7,则y′=6x-12x0.由y′=0得x0=0或x0=2.当x0=0时,y=7>0;x0=2时,y=-1<0.结合函数y=2x-6x+7的单调性可得方程2x-6x+7=0有3个解.故过点A(2,1)作曲线f(x)=x3-3x的切线最多有3条,故选A. 答案 A 13.(2022·武汉中学月考)已知曲线f(x)=xn+1(n∈N*)与直线x=1交于点P,设曲线y=f(x)在点P处的切线与x轴交点的横坐标为xn,则log2 016x1+log2 016x2+…+log2 016x2 015的值为________. 解析 f′(x)=(n+1)xn,k=f′(1)=n+1, 点P(1,1)处的切线方程为y-1=(n+1)(x-1), 令y=0,得x=1-=,即xn=, ∴x1·x2·…·x2 015=×××…××=,则log2 016x1+log2 016x2+…+log2 016x2 015=log2 016(x1x2…x2 015)=-1. 答案 -1 14.设抛物线C: y=-x2+x-4,过原点O作C的切线y=kx,使切点P在第一象限. (1)求k的值; (2)过点P作切线的垂线,求它与抛物线的另一个交点Q的坐标. 解 (1)设点P的坐标为(x1,y1),则y1=kx1,① y1=-x+x1-4,② ①代入②得x+x1+4=0. ∵P为切点,∴Δ=2-16=0得k=或k=.当k=时,x1=-2,y1=-17.当k=时,x1=2,y1=1. ∵P在第一象限,∴所求的斜率k=. (2)过P点作切线的垂线,其方程为y=-2x+5.③ 将③代入抛物线方程得x2-x+9=0. 设Q点的坐标为(x2,y2),即2x2=9, ∴x2=,y2=-4.∴Q点的坐标为.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 创新设计 2022 创新 设计 数学 一轮 文科 人教 课时 作业 第三 导数 及其 应用
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精***】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精***】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文