【同步备课】高中数学(北师大版)必修四教案:1.4-典型例题:正弦、余弦的诱导公式.docx
《【同步备课】高中数学(北师大版)必修四教案:1.4-典型例题:正弦、余弦的诱导公式.docx》由会员分享,可在线阅读,更多相关《【同步备课】高中数学(北师大版)必修四教案:1.4-典型例题:正弦、余弦的诱导公式.docx(3页珍藏版)》请在咨信网上搜索。
正弦、余弦的诱导公式例题讲析 例1.求下列三角函数的值 (1) sin240º; (2); (3) cos(-252º); (4) sin(-) 解:(1)sin240º=sin(180º+60º)=-sin60º= (2) =cos==; (3) cos(-252º)=cos252º= cos(180º+72º)=-cos72º=-0.3090; (4) sin(-)=-sin=-sin=sin= 说明:本题是诱导公式二、三的直接应用.通过本题的求解,使同学在利用公式二、三求三角函数的值方面得到基本的、初步的训练.本例中的(3)可使用计算器或查三角函数表. 例2.求下列三角函数的值 (1)sin(-119º45′); (2)cos; (3)cos(-150º); (4)sin. 解:(1)sin(-119º45′)=-sin119º45′=-sin(180º-60º15′)= -sin60º15′=-0.8682 (2)cos=cos()=cos= (3)cos(-150º)=cos150º=cos(180º-30º) =-cos30º=; (4)sin=sin()=-sin=. 说明:本题是公式四、五的直接应用,通过本题的求解,使同学在利用公式四、五求三角函数的值方面得到基本的、初步的训练.本题中的(1)可使用计算器或查三角函数表. 例3.求值: sin-cos-sin 略解:原式=-sin-cos-sin =-sin-cos+sin =sin+cos+sin =++0.3090 =1.3090 . 说明:本题考查了诱导公式一、二、三的应用,弧度制与角度制的换算,是一道比例1略难的小综合题.利用公式求解时,应留意符号. 例4.求值: sin(-1200º)·cos1290º+cos(-1020º)·sin(-1050º)+tan855º. 解:原式=-sin(120º+3·360º)cos(210º+3·360º) +cos(300º+2·360º)[-sin(330º+2·360º)]+tan(135º+2·360º) =-sin120º·cos210º-cos300º·sin330º+tan135º =-sin(180º-60º)·cos(180º+30º)- cos(360º-60º)·sin(360º-30º)+ =sin60º·cos30º+cos60º·sin30º-tan45º =·+·-1 =0 说明:本题的求解涉及了诱导公式一、二、三、四、五以及同角三角函数的关系.与前面各例比较,更具有综合性.通过本题的求解训练,可使同学进一步娴熟诱导公式在求值中的应用.值得指出的是教材中的诱导公式未介绍正切,因此,计算tan135º的值时应先用商数关系把tan135º改写成,再将分子分母分别用诱导公式进而求出tan135º的值. 例5.化简: . 略解:原式===1. 说明:化简三角函数式是诱导公式的又一应用,应当生疏这种题型. 例6.化简: 解:原式= = = =. 说明:本题可视为例5的姐妹题,相比之下,难度略大于例5.求解时应留意从所涉及的角中分别出2的整数倍才能利用诱导公式一. 例7.求证: 证明:左边= = = = =, 右边==, 所以,原式成立. 例8.求证 证明:左边= = =tan3α=右边, 所以,原式成立. 说明:例7和例8是诱导公式及同角三角函数的基本关系式在证明三角恒等式中的又一应用,具有肯定的综合性.尽管问题是以证明的形式消灭的,但其本质是等号左、右两边三角式的化简. 例9.已知.求:的值. 解:已知条件即,又, 所以:= 说明:本题是在约束条件下三角函数式的求值问题.由于给出了角的范围,因此,的三角函数的符号是肯定的,求解时既要留意诱导公式本身所涉及的符号,又要留意依据的范围确定三角函数的符号. 例10.已知, 求:的值. 解:由,得 , 所以 故 = =1+tan+2tan2 =1+ . 说明:本题也是有约束条件的三角函数式的求值问题,但比例9要简单一些.它对于同学娴熟诱导公式及同角三角函数关系式的应用.提高运算力量等都能起到较好的作用. 例11.已知的值. 解:由于, 所以:==-m 由于所以 于是:=, 所以:tan(= . 说明:通过观看,获得角与角之间的关系式=-(),为顺当利用诱导公式求cos()的值奠定了基础,这是求解本题的关键,我们应当擅长引导同学观看,充分挖掘的隐含条件,努力为解决问题查找突破口,本题求解中一个鲜亮的特点是诱导公式中角的结构要由我们通过对已知式和欲求之式中角的观看分析后自己构造出来,在思维和技能上明显都有较高的要求,给我们全新的感觉,它对于培育同学思维力量、创新意识,训练同学素养有着很好的作用. 例12.已知cos,角的终边在y轴的非负半轴上,求cos的值. 解:由于角的终边在y轴的非负半轴上, 所以:=, 于是 2()= 从而 所以 === 说明:本题求解中,通过对角的终边在y轴的非负半轴上的分析而得的=,还不能马上将未知与已知沟通起来.然而,当我们通过观看,分析角的结构特征,并将它表示为2()后,再将=代入,那么未知和已知之间随即架起了一座桥梁,它为利用诱导公式快速求值扫清了障碍.通过本题的求解训练,对于培育同学的观看分析力量以及思维的机敏性和制造性必将大有裨益.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 同步备课 同步 备课 高中数学 北师大 必修 教案 1.4 典型 例题 正弦 余弦 诱导 公式
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【天****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【天****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【天****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【天****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文