2022届-数学一轮(理科)-北师大版-课时作业-课时作业6-4-Word版含答案.docx
《2022届-数学一轮(理科)-北师大版-课时作业-课时作业6-4-Word版含答案.docx》由会员分享,可在线阅读,更多相关《2022届-数学一轮(理科)-北师大版-课时作业-课时作业6-4-Word版含答案.docx(4页珍藏版)》请在咨信网上搜索。
第4讲 数列求和 基础巩固题组 (建议用时:40分钟) 一、选择题 1.等差数列{an}的通项公式为an=2n+1,其前n项和为Sn,则数列的前10项的和为 ( ) A.120 B.70 C.75 D.100 解析 由于=n+2,所以的前10项和为10×3+=75. 答案 C 2.已知函数f(n)=且an=f(n)+f(n+1),则a1+a2+a3+…+a100等于 ( ) A.0 B.100 C.-100 D.10 200 解析 由题意,得a1+a2+a3+…+a100 =12-22-22+32+32-42-42+52+…+992-1002-1002+1012 =-(1+2)+(3+2)+…-(99+100)+(101+100) =-(1+2…+99+100)+(2+3+…+100+101) =-50×101+50×103=100.故选B. 答案 B 3.数列a1+2,…,ak+2k,…,a10+20共有十项,且其和为240,则a1+…+ak+…+a10的值为 ( ) A.31 B.120 C.130 D.185 解析 a1+…+ak+…+a10=240-(2+…+2k+…+20)=240-=240-110=130. 答案 C 4.(2021·西安质检)已知数列{an}满足a1=1,an+1·an=2n(n∈N+),则S2 016= ( ) A.22 016-1 B.3·21 008-3 C.3·21 008-1 D.3·21 007-2 解析 a1=1,a2==2,又==2. ∴=2.∴a1,a3,a5,…成等比数列;a2,a4,a6,…成等比数列, ∴S2 016=a1+a2+a3+a4+a5+a6+…+a2 015+a2 016 =(a1+a3+a5+…+a2 015)+(a2+a4+a6+…+a2 016) =+=3·21 008-3.故选B. 答案 B 5.已知数列{an}:,+,++,…,+++…+,…,若bn=,那么数列{bn}的前n项和Sn为 ( ) A. B. C. D. 解析 an==, ∴bn===4, ∴Sn=4 =4=. 答案 B 二、填空题 6.在等差数列{an}中,a1>0,a10·a11<0,若此数列的前10项和S10=36,前18项和S18=12,则数列{|an|}的前18项和T18的值是________. 解析 由a1>0,a10·a11<0可知d<0,a10>0,a11<0, ∴T18=a1+…+a10-a11-…-a18 =S10-(S18-S10)=60. 答案 60 7.(2021·宝鸡测试)在数列{an}中,a1=1,an+1=(-1)n(an+1),记Sn为{an}的前n项和,则S2 013=________. 解析 由a1=1,an+1=(-1)n(an+1)可得a1=1, a2=-2,a3=-1,a4=0,该数列是周期为4的数列, 所以S2 013=503(a1+a2+a3+a4)+a2 013=503×(-2)+1=-1 005. 答案 -1 005 8.(2022·武汉模拟)等比数列{an}的前n项和Sn=2n-1, 则a+a+…+a=________. 解析 当n=1时,a1=S1=1, 当n≥2时,an=Sn-Sn-1=2n-1-(2n-1-1)=2n-1, 又∵a1=1适合上式. ∴an=2n-1,∴a=4n-1. ∴数列{a}是以a=1为首项,以4为公比的等比数列. ∴a+a+…+a==(4n-1). 答案 (4n-1) 三、解答题 9.(2021·滨州一模)已知数列{an}的前n项和是Sn,且Sn+an=1(n∈N+). (1)求数列{an}的通项公式; (2)设bn=log(1-Sn+1)(n∈N+),令Tn=++…+,求Tn. 解 (1)当n=1时,a1=S1,由S1+a1=1,得a1=, 当n≥2时,Sn=1-an,Sn-1=1-an-1, 则Sn-Sn-1=(an-1-an),即an=(an-1-an), 所以an=an-1(n≥2). 故数列{an}是以为首项,为公比的等比数列. 故an=·n-1=2·n(n∈N+). (2)由于1-Sn=an=n. 所以bn=log(1-Sn+1)=logn+1=n+1, 由于==-, 所以Tn=++…+ =++…+ =-=. 10.(2021·山东卷)设等差数列{an}的前n项和为Sn,且S4=4S2,a2n=2an+1. (1)求数列{an}的通项公式; (2)设数列{bn}的前n项和为Tn,且Tn+=λ(λ为常数),令cn=b2n,(n∈N+),求数列{cn}的前n项和Rn. 解 (1)设等差数列{an}的首项为a1,公差为d. 由S4=4S2,a2n=2an+1,得 解得a1=1,d=2. 因此an=2n-1,n∈N+. (2)由题意知Tn=λ-, 所以n≥2时,bn=Tn-Tn-1=-+=. 故cn=b2n==(n-1)n-1,n∈N+, 所以Rn=0×0+1×1+2×2+3×3+…+(n-1)×n-1, 则Rn=0×1+1×2+2×3+…+(n-2)×n-1+(n-1)×n, 两式相减得 Rn=1+2+3+…+n-1-(n-1)×n=-(n-1)×n=-n, 整理得Rn=. 所以数列{cn}的前n项和Rn=. 力量提升题组 (建议用时:25分钟) 11.(2021·西安模拟)数列{an}满足an+an+1=(n∈N+),且a1=1,Sn是数列{an}的前n项和,则S21= ( ) A. B.6 C.10 D.11 解析 依题意得an+an+1=an+1+an+2=,则an+2=an,即数列{an}中的奇数项、偶数项分别相等,则a21=a1=1,S21=(a1+a2)+(a3+a4)+…+(a19+a20)+a21=10(a1+a2)+a21=10×+1=6,故选B. 答案 B 12.(2021·长沙模拟)已知函数f(n)=n2cos(nπ),且an=f(n)+f(n+1),则a1+a2+a3+…+a100= ( ) A.-100 B.0 C.100 D.10 200 解析 若n为偶数,则an=f(n)+f(n+1)=n2-(n+1)2=-(2n+1),为首项为a2=-5,公差为-4的等差数列;若n为奇数,则an=f(n)+f(n+1)=-n2+(n+1)2=2n+1,为首项为a1=3,公差为4的等差数列. 所以a1+a2+a3+…+a100=(a1+a3+…+a99)+(a2+a4+…+a100)=50×3+×4+50×(-5)-×4=-100. 答案 A 13.设f(x)=,利用倒序相加法,可求得f+f+…+f的值为________. 设S=f+f+…+f,倒序相加有2S=++…+ [f+f]=10,即S=5. 答案 5 14.在等比数列{an}中,a1,a2,a3分别是下表第一、二、三行中的某一个数,且a1,a2,a3中的任何两个数不在下表中的同一列. 第一列 其次列 第三列 第一行 3 2 10 其次行 6 4 14 第三行 9 8 18 (1)求数列{an}的通项公式; (2)若数列{bn}满足:bn=an+(-1)nln an,求数列{bn}的前n项和Sn. 解 (1)当a1=3时,不合题意; 当a1=2时,当且仅当a2=6,a3=18时,符合题意; 当a1=10时,不合题意. 因此a1=2,a2=6,a3=18,所以公比q=3,故an=2·3n-1. (2)由于bn=an+(-1)nln an =2·3n-1+(-1)nln(2·3n-1) =2·3n-1+(-1)n[ln 2+(n-1)ln 3] =2·3n-1+(-1)n(ln 2-ln 3)+(-1)nnln 3, 所以Sn=2(1+3+…+3n-1)+[-1+1-1+…+(-1)n]·(ln 2-ln 3)+[-1+2-3+…+(-1)nn]ln 3, 所以当n为偶数时, Sn=2×+ln 3=3n+ln 3-1; 当n为奇数时, Sn=2×-(ln 2-ln 3)+ln 3 =3n-ln 3-ln 2-1. 综上所述,Sn=- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 创新设计 创新 设计 2022 数学 一轮 理科 北师大 课时 作业 Word 答案
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【人****来】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【人****来】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【人****来】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【人****来】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文