2021年高考数学(四川专用-理)一轮复习考点突破:选修4-4-第2讲-参数方程.docx
《2021年高考数学(四川专用-理)一轮复习考点突破:选修4-4-第2讲-参数方程.docx》由会员分享,可在线阅读,更多相关《2021年高考数学(四川专用-理)一轮复习考点突破:选修4-4-第2讲-参数方程.docx(6页珍藏版)》请在咨信网上搜索。
第2讲 参数方程 [最新考纲] 1.了解参数方程,了解参数的意义. 2.能选择适当的参数写出直线、圆和椭圆的参数方程. 3.把握直线的参数方程及参数的几何意义,能用直线的参数方程解决简洁的相关问题. 知 识 梳 理 1.曲线的参数方程 在平面直角坐标系xOy中,假如曲线上任意一点的坐标x,y都是某个变量t的函数 并且对于t的每一个允许值上式所确定的点M(x,y)都在这条曲线上,则称上式为该曲线的参数方程,其中变量t称为参数. 2.一些常见曲线的参数方程 (1)过点P0(x0,y0),且倾斜角为α的直线的参数方程为(t为参数). (2)圆的方程(x-a)2+(y-b)2=r2的参数方程为(θ为参数). (3)椭圆方程+=1(a>b>0)的参数方程为(θ为参数). (4)抛物线方程y2=2px(p>0)的参数方程为(t为参数). 诊 断 自 测 1.极坐标方程ρ=cos θ和参数方程(t为参数)所表示的图形分别是________. ①直线、直线;②直线、圆;③圆、圆;④圆、直线. 解析 ∵ρcos θ=x,∴cos θ=代入到ρ=cos θ,得ρ=,∴ρ2=x,∴x2+y2=x表示圆.又∵相加得x+y=1,表示直线. 答案 ④ 2.若直线(t为实数)与直线4x+ky=1垂直,则常数k=________. 解析 参数方程所表示的直线方程为3x+2y=7,由此直线与直线4x+ky=1垂直可得-×=-1,解得k=-6. 答案 -6 3.(2022·北京卷)直线(t为参数)与曲线(α为参数)的交点个数为________. 解析 直线方程可化为x+y-1=0,曲线方程可化为x2+y2=9,圆心(0,0)到直线x+y-1=0的距离d==<3.∴直线与圆相交有两个交点. 答案 2 4.已知直线l:(t为参数)上到点A(1,2)的距离为4的点的坐标为________. 解析 设点Q(x,y)为直线上的点, 则|QA|= ==4, 解之得,t=±2,所以Q(-3,6)或Q(5,-2). 答案 (-3,6)和(5,-2) 5.(2021·广东卷)已知曲线C的极坐标方程为ρ=2cos θ,以极点为原点,极轴为x轴的正半轴建立直角坐标系,则曲线C的参数方程为________. 解析 由ρ=2cos θ知,ρ2=2ρcos θ 所以x2+y2=2x,即(x-1)2+y2=1, 故其参数方程为(θ为参数). 答案 (θ为参数) 考点一 参数方程与一般方程的互化 【例1】 把下列参数方程化为一般方程,并说明它们各表示什么曲线; (1)(t为参数); (2)(t为参数); (3)(t为参数). 解 (1)由x=1+t得t=2x-2. ∴y=2+(2x-2). ∴x-y+2-=0,此方程表示直线. (2)由y=2+t得t=y-2,∴x=1+(y-2)2. 即(y-2)2=x-1,此方程表示抛物线. (3) ∴①2-②2得x2-y2=4,此方程表示双曲线. 规律方法 参数方程化为一般方程:化参数方程为一般方程的基本思路是消去参数,常用的消参方法有代入消去法、加减消去法、恒等式(三角的或代数的)消去法,不要忘了参数的范围. 【训练1】 将下列参数方程化为一般方程. (1)(θ为参数); (2)(t为参数). 解 (1)由(sin θ+cos θ)2=1+sin 2θ=2-(1-sin 2θ), 得y2=2-x.又x=1-sin 2θ∈[0,2], 得所求的一般方程为y2=2-x,x∈[0,2]. (2)由参数方程得et=x+y,e-t=x-y, ∴(x+y)(x-y)=1,即x2-y2=1. 考点二 直线与圆参数方程的应用 【例2】 在直角坐标系xOy中,直线l的参数方程为(t为参数).在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,圆C的方程为ρ=2sin θ. (1)求圆C的直角坐标方程; (2)设圆C与直线l交于点A,B,若点P的坐标为(3,),求|PA|+|PB|. 解 (1)由ρ=2sin θ,得ρ2=2ρsin θ. ∴x2+y2=2y,即x2+(y-)2=5. (2)将l的参数方程代入圆C的直角坐标方程. 得2+2=5,即t2-3t+4=0. 由于Δ=(3)2-4×4=2>0,故可设t1,t2是上述方程的两实根, 所以 又直线l过点P(3,), 故由上式及t的几何意义得|PA|+|PB|=|t1|+|t2|=t1+t2=3. 规律方法 (1)过定点P0(x0,y0),倾斜角为α的直线参数方程的标准形式为(t为参数),t的几何意义是直线上的点P到点P0(x0,y0)的数量,即t=|PP0|时为距离.使用该式时直线上任意两点P1、P2对应的参数分别为t1、t2,则|P1P2|=|t1-t2|,P1P2的中点对应的参数为(t1+t2). (2)对于形如(t为参数),当a2+b2≠1时,应先化为标准形式后才能利用t的几何意义解题. 【训练2】 已知直线l的参数方程为(参数t∈R),圆 C的参数方程为(参数θ∈[0,2π]),求直线l被 圆C所截得的弦长. 解 由消参数后得一般方程为2x+y-6=0, 由消参数后得一般方程为(x-2)2+y2=4,明显圆心坐标为(2,0),半径为2.由于圆心到直线2x+y-6=0的距离为d==, 所以所求弦长为2 =. 考点三 极坐标、参数方程的综合应用 【例3】 已知P为半圆C:(θ为参数,0≤θ≤π)上的点,点A的坐标为(1,0),O为坐标原点,点M在射线OP上,线段OM与C的弧的长度均为. (1)以O为极点,x轴的正半轴为极轴建立极坐标系,求点M的极坐标; (2)求直线AM的参数方程. 解 (1)由已知,点M的极角为,且点M的极径等于,故点M的极坐标为. (2)点M的直角坐标为,A(1,0). 故直线AM的参数方程为(t为参数). 规律方法 涉及参数方程和极坐标方程的综合题,求解的一般方法是分别化为一般方程和直角坐标方程后求解.当然,还要结合题目本身特点,确定选择何种方程. 【训练3】 (2021·福建卷)在平面直角坐标系中,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,已知点A的极坐标为(,),直线l的极坐标方程为ρcos(θ-)=a,且点A在直线l上. (1)求a的值及直线l的直角坐标方程; (2)圆C的参数方程为(α为参数),试推断直线l与圆C的位置关系. 解 (1)由点A(,)在直线ρcos(θ-)=a上,可得a=. 所以直线l的方程可化为ρcos θ+ρsin θ=2, 从而直线l的直角坐标方程为x+y-2=0. (2)由已知得圆C的直角坐标方程为(x-1)2+y2=1, 所以圆C的圆心为(1,0),半径r=1, 由于圆心C到直线l的距离d==<1, 所以直线l与圆C相交. 转化思想在解题中的应用 【典例】 已知圆锥曲线(θ是参数)和定点A(0, ),F1、F2是圆锥曲线的左、右焦点. (1)求经过点F1且垂直于直线AF2的直线l的参数方程; (2)以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,求直线AF2的极坐标方程. [审题视点] (1)先将圆锥曲线参数方程化为一般方程,求出F1的坐标,然后求出直线的倾斜角度数,再利用公式就能写出直线l的参数方程.(2)直线AF2是已知确定的直线,利用求极坐标方程的一般方法求解. 解 (1)圆锥曲线化为一般方程+=1,所以F1(-1,0),F2(1,0),则直线AF2的斜率k=-,于是经过点F1且垂直于直线AF2的直线l的斜率k′=,直线l的倾斜角是30°, 所以直线l的参数方程是(t为参数), 即(t为参数). (2)直线AF2的斜率k=-,倾斜角是120°, 设P(ρ,θ)是直线AF2上任一点, 则=,ρsin(120°-θ)=sin 60°, 则ρsin θ+ρcos θ=. [反思感悟] (1)本题考查了极坐标方程和参数方程的求法及应用.重点考查了转化与化归力量.(2)当用极坐标或参数方程争辩问题不很娴熟时,可以转化成我们比较生疏的一般方程求解.(3)本题易错点是计算不精确 ,极坐标方程求解错误. 【自主体验】 已知直线l的参数方程为(t为参数),P是椭圆+y2=1上任意一点,求点P到直线l的距离的最大值. 解 将直线l的参数方程(t为参数)转化为一般方程为x+2y=0,由于P为椭圆+y2=1上任意一点, 故可设P(2cos θ,sin θ),其中θ∈R. 因此点P到直线l的距离 d==. 所以当θ=kπ+,k∈Z时, d取得最大值. 一、填空题 1.(2022·芜湖模拟)直线(t为参数)上与点A(-2,3)的距离等于的点的坐标是________. 解析 由题意知(-t)2+(t)2=()2,所以t2=,t=±,代入(t为参数),得所求点的坐标为(-3,4)或(-1,2). 答案 (-3,4)或(-1,2) 2.(2022·海淀模拟)若直线l:y=kx与曲线C:(参数θ∈R)有唯一的公共点,则实数k=________. 解析 曲线C化为一般方程为(x-2)2+y2=1,圆心坐标为(2,0),半径r=1.由已知l与圆相切,则r==1⇒k=±. 答案 ± 3.已知椭圆的参数方程(t为参数),点M在椭圆上,对应参数t=,点O为原点,则直线OM的斜率为________. 解析 当t=时,x=1,y=2,则M(1,2),∴直线OM的斜率k=2. 答案 2 4.(2021·湖南卷)在平面直角坐标系xOy中,若l:(t为参数)过椭圆C:(φ为参数)的右顶点,则常数a的值为________. 解析 ∵x=t,且y=t-a, 消去t,得直线l的方程y=x-a, 又x=3cos φ且y=2sin φ,消去φ, 得椭圆方程+=1,右顶点为(3,0), 依题意0=3-a, ∴a=3. 答案 3 5.直线3x+4y-7=0截曲线(α为参数)的弦长为________. 解析 曲线可化为x2+(y-1)2=1,圆心(0,1)到直线的距离d==,则弦长l=2=. 答案 6.已知直线l1:(t为参数),l2:(s为参数),若l1∥l2,则k=________;若l1⊥l2,则k=________. 解析 将l1、l2的方程化为直角坐标方程得l1:kx+2y-4-k=0,l2:2x+y-1=0,由l1∥l2,得=≠⇒k=4,由l1⊥l2,得2k+2=0⇒k=-1. 答案 4 -1 7.(2022·广东卷)在平面直角坐标系xOy中,曲线C1和C2的参数方程分别为(t为参数)和(θ为参数),则曲线C1与C2的交点坐标为________. 解析 曲线C1的一般方程为y2=x(y≥0), 曲线C2的一般方程为x2+y2=2. 由 解得即交点坐标为(1,1). 答案 (1,1) 8.直角坐标系xOy中,以原点为极点,x轴的正半轴为极轴建立极坐标系,设点A,B分别在曲线C1:(θ为参数)和曲线C2:ρ=1上,则|AB|的最小值为________. 解析 消掉参数θ,得到关于x、y的一般方程C1:(x-3)2+y2=1,表示以(3,0)为圆心,以1为半径的圆;C2:x2+y2=1,表示的是以原点为圆心的单位圆,|AB|的最小值为3-1-1=1. 答案 1 9.(2022·湖南卷)在极坐标系中,曲线C1:ρ(cos θ+sin θ)=1与曲线C2:ρ=a(a>0)的一个交点在极轴上,则a=______. 解析 ρ(cos θ+sin θ)=1,即ρcos θ+ρsin θ=1对应的一般方程为x+y-1=0,ρ=a(a>0)对应的一般方程为x2+y2=a2.在x+y-1=0中,令y=0,得x=.将代入x2+y2=a2得a=. 答案 二、解答题 10.(2021·新课标全国Ⅰ卷)已知曲线C1的参数方程为(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=2sin θ. (1)把C1的参数方程化为极坐标方程; (2)求C1与C2交点的极坐标(ρ≥0,0≤θ<2π). 解 (1)将消去参数t, 化为一般方程(x-4)2+(y-5)2=25, 即C1:x2+y2-8x-10y+16=0. 将代入x2+y2-8x-10y+16=0得ρ2-8ρcos θ-10ρsin θ+16=0. 所以C1的极坐标方程为 ρ2-8ρcos θ-10ρsin θ+16=0. (2)C2的一般方程为x2+y2-2y=0. 由 解得或 所以C1与C2交点的极坐标分别为,. 11.(2021·新课标全国Ⅱ卷)已知动点P、Q都在曲线C:(t为参数)上,对应参数分别为t=α与t=2α(0<α<2π),M为PQ的中点. (1)求M的轨迹的参数方程; (2)将M到坐标原点的距离d表示为α的函数,并推断M的轨迹是否过坐标原点. 解 (1)依题意有P(2cos α,2sin α),Q(2cos 2α,2sin 2α), 因此M(cos α+cos 2α,sin α+sin 2α). M的轨迹的参数方程为(α为参数,0<α<2π). (2)M点到坐标原点的距离d==(0<α<2π). 当α=π时,d=0,故M的轨迹通过坐标原点. 12.(2022·新课标全国卷)已知曲线C1的参数方程是(φ为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程是ρ=2,正方形ABCD的顶点都在C2上,且A,B,C,D依逆时针次序排列,点A的极坐标为. (1)求点A,B,C,D的直角坐标; (2)设P为C1上任意一点,求|PA|2+|PB|2+|PC|2+|PD|2的取值范围. 解 (1)由已知可得A, B, C, D, 即A(1,),B(-,1),C(-1,-),D(,-1). (2)设P(2cos φ,3sin φ), 令S=|PA|2+|PB|2+|PC|2+|PD|2, 则S=16cos2φ+36sin2φ+16=32+20sin2φ. 由于0≤sin2φ≤1, 所以S的取值范围是[32,52].- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 创新设计 创新 设计 2021 年高 数学 四川 专用 一轮 复习 考点 突破 选修 参数 方程
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文