2013-2020学年高一下学期数学人教A版必修2教案-第4章第4.1.1节4.docx
《2013-2020学年高一下学期数学人教A版必修2教案-第4章第4.1.1节4.docx》由会员分享,可在线阅读,更多相关《2013-2020学年高一下学期数学人教A版必修2教案-第4章第4.1.1节4.docx(2页珍藏版)》请在咨信网上搜索。
【新课教学过程设计(四)】 第三章 圆与方程 第4.1.1节 圆的标准方程 Ⅰ.复习提问、引入课题 师:前面我们学习了曲线和方程的关系及求曲线方程的方法。请同学们考虑:如何求适合某种条件的点的轨迹? 生:①建立适当的直角坐标系,设曲线上任一点M的坐标为(x,y);②写出适合某种条件p的点M的集合P={M ︳p(M)};③用坐标表示条件,列出方程f(x,y)=0;④化简方程f(x,y)=0为最简形式。⑤证明以化简后方程的解为坐标的点都是曲线上的点(一般省略)。[多媒体演示] 师:这就是建系、设点、列式、化简四步曲。用这四步曲我们可以求适合某种条件的任何曲线方程,今日我们来看圆这种曲线的方程。[给出标题] 师:前面我们曾证明过圆心在原点,半径为5的圆的方程:x2+y2=52 即x2+y2=25. 若半径发生变化,圆的方程又是怎样的?能否写出圆心在原点,半径为r的圆的方程? 生:x2+y2=r2. 师:你是怎样得到的?(引导启发)圆上的点满足什么条件? 生:圆上的任一点到圆心的距离等于半径。即 ,亦即 x2+y2=r2. 师:x2+y2=r2 表示的圆的位置比较特殊:圆心在原点,半径为r.有时圆心不在原点,若此圆的圆心移至C(a,b)点(如图),方程又是怎样的? C r 即:(x-a)2+(y-b)2= r2 Ⅱ.讲授新课、尝试练习 生:此圆是到点C(a,b)的距离等于半径r的点的集合, Y M(x,y) 由两点间的距离公式得师:方程(x-a)2+(y-b)2= r2 叫做圆的标准方程. O X 特殊:当圆心在原点,半径为r时,圆的标准方程为:x2+y2=r2. 师:圆的标准方程由哪些量打算? 生:由圆心坐标(a,b)及半径r打算。 师:很好!实际上圆心和半径分别打算圆的位置和大小。由此可见,要确定圆的方程,只需确定a、b、r这三个独立变量即可。 1、 写出下列各圆的标准方程:[多媒体演示] ① 圆心在原点,半径是3 :________________________ ② 圆心在点C(3,4),半径是:______________________ ③ 经过点P(5,1),圆心在点C(8,-3):_______________________ 2、 变式题[多媒体演示] ① 求以C(1,3)为圆心,并且和直线3x-4y-7=0相切的圆的方程。 答案:(x-1)2 + (y-3)2 = ② 已知圆的方程是 (x-a)2 +y2 = a2 ,写出圆心坐标和半径。 答案: C(a,0), r=|a| Ⅲ.例题分析、巩固应用 师:下面我们通过例题来看看圆的标准方程的应用. [例1] 已知圆的方程是 x2+y2=17,求经过圆上一点P(,)的切线的方程。 师:你打算怎样求过P点的切线方程? Y 生:要求经过一点的直线方程,可利用直线的点斜式来求。 师: 斜率怎样求? P 生:。。。。。。 师:已知条件有哪些?能利用吗?不妨结合图形来看看 (如图) O X 生:切线与过切点的半径垂直,故斜率互为负倒数 半径OP的斜率 K1=, 所以切线的斜率 K=-=- 所以所求切线方程:y-= -(x-) 即:x+y=17 (老师板书) 师:对比圆的方程x2+y2=17和经过点P(,)的切线方程x+y=17,你能作出怎样的猜想? 生:。。。。。。 师:由x2+y2=17怎样写出切线方程x+y=17,与已知点P(,)有何关系? (若看不出来,再看一例) [例1/] 圆的方程是x2+y2=13,求过此圆上一点(2,3)的切线方程。 答案:2x+3y=13 即:2x+3y-13=0 师:发觉规律了吗?(同学纷纷举手回答) 生:分别用切点的横坐标和纵坐标代替圆方程中的一个x和一个y,便得到了切线方程。 师:若将已知条件中圆半径改为r,点改为圆上任一点(xo,yo),则结论将会发生怎样的变化?大胆地猜一猜! 生:xox+yoy=r2. 师:这个猜想对不对?若对,可否给出证明? 生:。。。。。。 [例2]已知圆的方程是 x2+y2=r2,求经过圆上一点P(xo,yo)的切线的方程。 解:如图(上一页),由于切线与过切点的半径垂直,故半径OP的斜率与切线的斜率互为负倒数 ∵半径OP的斜率 K1=,∴切线的斜率 K=-=- ∴所求切线方程:y-yo= -(x-xo) 即:xox+yoy=xo2+yo2 亦即:xox+yoy=r2. (老师板书) 当点P在坐标轴上时,可以验证上面方程同样适用。 归纳总结:圆的方程可看成 x.x+y.y=r2,将其中一个x、y用切点的坐标xo、yo 替换,可得到切线方程 [例3]右图为某圆拱桥的一孔圆拱的示意图.该圆拱跨度AB=20M,拱高OP=4M,在建筑时每隔4M需用一个支柱支撑,求支柱A2P2的长度。(精确到0.01M) 引导同学分析,共同完成解答。 师生分析:①建系; ②设圆的标准方程(待定系数);③求系数(求出圆的标准方程);④利用方程求A2P2的长度。 解:以AB所在直线为X轴,O为坐标原点,建立如图所示的坐标系。则圆心在Y轴上,设为 (0,b),半径为r,那么圆的方程是 x2+(y-b)2=r2. ∵P(0,4),B(10,0)都在圆上,于是得到方程组: Y P2 P 解得:b=-10.5 ,r2=14.52 ∴圆的方程为 x2+(y+10.5)2=14.52. 将P2的横坐标x=-2代入圆的标准方程 A A2 O B X 且取y>0 得:y= ≈14.36-10.5=3.86 (M) 答:支柱A2P2的长度约为3.86M。 Ⅳ.课堂练习、课时小结 课本P77练习2,3 师:通过本节学习,要求大家把握圆的标准方程,理解并把握切线方程的探求过程和方法,能运用圆的方程解决实际问题. Ⅴ.问题延长、课后作业 (一)若P(xo,yo)在圆(x-a)2+(y-b)2= r2上时,試求过P点的圆的切线方程。 课本P81习题7.7 : 1,2,3,4 (二)预习课本P77~P79- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 名师课堂-备课包 名师 课堂 备课 2013 2020 学年 下学 期数 学人 必修 教案 4.1
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精***】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精***】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文