2021年高考数学(四川专用-理)一轮复习考点突破:第8篇-第3讲-圆的方程.docx
《2021年高考数学(四川专用-理)一轮复习考点突破:第8篇-第3讲-圆的方程.docx》由会员分享,可在线阅读,更多相关《2021年高考数学(四川专用-理)一轮复习考点突破:第8篇-第3讲-圆的方程.docx(8页珍藏版)》请在咨信网上搜索。
1、第3讲圆的方程最新考纲1把握确定圆的几何要素,把握圆的标准方程与一般方程2初步了解用代数方法处理几何问题.知 识 梳 理1圆的定义和圆的方程定义平面内到定点的距离等于定长的点的轨迹叫做圆方程标准(xa)2(yb)2r2(r0)圆心C(a,b)半径为r一般x2y2DxEyF0充要条件:D2E24F0圆心坐标:半径r2.点与圆的位置关系(1)确定方法:比较点与圆心的距离与半径的大小关系(2)三种关系:圆的标准方程(xa)2(yb)2r2,点M(x0,y0)(x0a)2(y0b)2r2点在圆上;(x0a)2(y0b)2r2点在圆外;(x0a)2(y0b)2r2点在圆内辨 析 感 悟1对圆的方程的理解
2、(1)确定圆的几何要素是圆心与半径()(2)方程x2y2a2表示半径为a的圆()(3)方程x2y24mx2y5m0表示圆()(4)(2021江西卷改编)若圆C经过坐标原点和点(4,0)且与直线y1相切,则圆C的方程是(x2)22.()2对点与圆的位置关系的生疏(5)若点M(x0,y0)在圆x2y2DxEyF0外,则xyDx0Ey0F0.()(6)已知圆的方程为x2y22y0,过点A(1,2)作该圆的切线只有一条()感悟提升1一共性质圆心在任一弦的中垂线上,如(4)中可设圆心为(2,b)2三个防范一是含字母的圆的标准方程中留意字母的正负号,如(2)中半径应为|a|;二是留意一个二元二次方程表示圆
3、时的充要条件,如(3);三是过肯定点,求圆的切线时,首先推断点与圆的位置关系若点在圆外,有两个结果,若只求出一个,应当考虑切线斜率不存在的状况,如(6).考点一求圆的方程【例1】 依据下列条件,求圆的方程(1)求过P(4,2),Q(1,3)两点,且在y轴上截得的线段长为4的圆的方程(2)已知圆的半径为,圆心在直线y2x上,圆被直线xy0截得的弦长为4.解(1)设圆的方程为x2y2DxEyF0(D2E24F0)将P,Q点的坐标分别代入得令x0,由得y2EyF0.由已知|y1y2|4,其中y1,y2是方程的两根,所以(y1y2)2(y1y2)24y1y2E24F48.解、组成的方程组得或故所求圆的
4、方程为x2y22x120或x2y210x8y40.(2)法一设圆的方程为(xa)2(yb)210.由圆心在直线y2x上,得b2a.由圆在直线xy0上截得的弦长为4,将yx代入(xa)2(yb)210,整理得2x22(ab)xa2b2100.由弦长公式得 4,化简得ab2.解、得a2,b4或a2,b4.故所求圆的方程为(x2)2(y4)210或(x2)2(y4)210.法二依据图形的几何性质:半径、弦长的一半、弦心距构成直角三角形如图,由勾股定理,可得弦心距d.又弦心距等于圆心(a,b)到直线xy0的距离,所以d,即.又已知b2a.解、得a2,b4或a2,b4.故所求圆的方程是(x2)2(y4)
5、210或(x2)2(y4)210.规律方法 求圆的方程,主要有两种方法:(1)几何法:具体过程中要用到学校有关圆的一些常用性质和定理如:圆心在过切点且与切线垂直的直线上;圆心在任意弦的中垂线上;两圆相切时,切点与两圆心三点共线(2)待定系数法:依据条件设出圆的方程,再由题目给出的条件,列出等式,求出相关量一般地,与圆心和半径有关,选择标准式,否则,选择一般式不论是哪种形式,都要确定三个独立参数,所以应当有三个独立等式【训练1】 (1)(2022济南模拟)若圆C的半径为1,圆心在第一象限,且与直线4x3y0和x轴都相切,则该圆的标准方程是()A(x2)2(y1)21 B(x2)2(y1)21C(
6、x2)2(y1)21 D(x3)2(y1)21(2)已知圆C经过A(5,1),B(1,3)两点,圆心在x轴上,则C的方程为_解析(1)由于圆心在第一象限且与x轴相切,故设圆心为(a,1),又由圆与直线4x3y0相切,得1,解得a2或(舍去)故圆的标准方程为(x2)2(y1)21.故选A.(2)依题意设所求圆的方程为(xa)2y2r2,将A,B点坐标分别代入方程得解得所以所求圆的方程为(x2)2y210.答案(1)A(2)(x2)2y210考点二与圆有关的最值问题【例2】 已知实数x,y满足方程x2y24x10.(1)求的最大值和最小值;(2)求yx的最大值和最小值;(3)求x2y2的最大值和最
7、小值解原方程可化为(x2)2y23,表示以(2,0)为圆心,为半径的圆(1)的几何意义是圆上一点与原点连线的斜率,所以设k,即ykx.当直线ykx与圆相切时,斜率k取最大值或最小值,此时,解得k(如图1)所以的最大值为,最小值为.(2)yx可看作是直线yxb在y轴上的截距,当直线yxb与圆相切时,纵截距b取得最大值或最小值,此时,解得b2(如图2)所以yx的最大值为2,最小值为2.(3)x2y2表示圆上的一点与原点距离的平方,由平面几何学问知,在原点和圆心连线与圆的两个交点处取得最大值和最小值(如图3)又圆心到原点的距离为2,所以x2y2的最大值是(2)274,x2y2的最小值是(2)274.
8、规律方法 与圆有关的最值问题,常见的有以下几种类型:(1)形如形式的最值问题,可转化为动直线斜率的最值问题;(2)形如taxby形式的最值问题,可转化为动直线截距的最值问题;(3)形如(xa)2(yb)2形式的最值问题,可转化为动点到定点的距离的平方的最值问题【训练2】 (2022金华十校联考)已知P是直线l:3x4y110上的动点,PA,PB是圆x2y22x2y10的两条切线,C是圆心,那么四边形PACB面积的最小值是 ()A. B2 C. D2解析圆的标准方程为(x1)2(y1)21,圆心为C(1,1),半径为r1,依据对称性可知,四边形PACB的面积为2SAPC2|PA|r|PA|,要使
9、四边形PACB的面积最小,则只需|PC|最小,最小时为圆心到直线l:3x4y110的距离d2.所以四边形PACB面积的最小值为.答案C考点三与圆有关的轨迹问题【例3】 在平面直角坐标系xOy中,已知圆P在x轴上截得线段长为2,在y轴上截得线段长为2.(1)求圆心P的轨迹方程;(2)若P点到直线yx的距离为,求圆P的方程审题路线(1)设圆心P为(x,y),半径为r由圆的几何性质得方程组消去r可得点P的轨迹方程(2)设点P(x0,y0)由点到直线的距离公式可得一方程点P在第(1)问所求曲线上可得一方程以上两方程联立可解得P点坐标与圆P的半径得到圆P的方程解(1)设P(x,y),圆P的半径为r.由题
10、设y22r2,x23r2.从而y22x23.故P点的轨迹方程为y2x21.(2)设P(x0,y0),由已知得.又P在双曲线y2x21上,从而得由得此时,圆P半径r.由得此时,圆P的半径r.故圆P的方程为x2(y1)23或x2(y1)23.规律方法 求与圆有关的轨迹方程时,常用以下方法:(1)直接法:依据题设条件直接列出方程;(2)定义法:依据圆的定义写出方程;(3)几何法:利用圆的性质列方程;(4)代入法:找出要求点与已知点的关系,代入已知点满足的关系式【训练3】 已知直角三角形ABC的斜边为AB,且A(1,0),B(3,0),求:(1)直角顶点C的轨迹方程;(2)直角边BC中点M的轨迹方程解
11、(1)法一设顶点C(x,y),由于ACBC,且A,B,C三点不共线,所以x3且x1.又kAC,kBC,且kACkBC1,所以1,化简得x2y22x30.因此,直角顶点C的轨迹方程为x2y22x30(x3且x1)法二设AB中点为D,由中点坐标公式得D(1,0),由直角三角形的性质知,|CD|AB|2,由圆的定义知,动点C的轨迹是以D(1,0)为圆心,2为半径长的圆(由于A,B,C三点不共线,所以应除去与x轴的交点)所以直角顶点C的轨迹方程为(x1)2y24(x3且x1)(2)设点M(x,y),点C(x0,y0),由于B(3,0),M是线段BC的中点,由中点坐标公式得x(x3且x1),y,于是有x
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 创新设计 创新 设计 2021 年高 数学 四川 专用 一轮 复习 考点 突破 方程
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【a199****6536】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【a199****6536】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。