浅谈初中数学教学中的变式教学教学提纲.doc
《浅谈初中数学教学中的变式教学教学提纲.doc》由会员分享,可在线阅读,更多相关《浅谈初中数学教学中的变式教学教学提纲.doc(12页珍藏版)》请在咨信网上搜索。
浅谈初中数学教学中的变式教学 精品文档 类 别 初中数学 浅谈初中数学教学中的变式教学 内容摘要:变式教学是连接双基与创新的纽带。在数学课堂中被广泛应用。新课程背景下充分运用变式教学,可拓展学生的思维.促使学生自觉将数学学习技术内化为主体需要,使教学过程成为有利于学生积极探究的过程,提高学生的学习效能。本文首先提出变式教学的本质含义、设计变式的原则,然后论述变式在各种数学题型中的应用,最后强调变式教学的价值。 关键词:初中数学;变式教学;变式原则;有效教学 《数学新课程标准》指出:学生的数学学习内容应当是现实的、有意义的、富有挑战性的,这些内容要有利于学生主动地进行观察、实验、猜测、验证、推理与交流等数学活动。数学教学过程不仅是课本知识的传授,更重要的是对学生能力的训练和情操的培养,尤其要重视学习能力和学习方法的培养。抓住典型习题,寻求多种解题途径,促使学生的思维向多层次、多方向发散。注重这种变式模式的教学,对提高学生分析问题和解决问题的能力大有裨益。 因此,在例题、习题教学中,当学生获得某种基本解法后,教师应引导学生发掘例、习题的潜在因素,通过改变题目的条件、探求题目的结论、改变情境等多种变式途径,强化学生对知识和方法的理解,帮助他们对问题进行多角度、多层次的思考。 一、数学变式教学的本质含义 数学变式教学,是指通过不同角度、不同的侧面、不同的背景,从多个方面变更所提供的数学对象或数学问题的呈现形式,使事物的非本质特征发生变化而本质特征保持不变的教学形式。 初中数学变式教学,对提高学生的思维能力、应变能力是大有益处。变式教学在教学过程中不仅是对基础知识、基本技能和思维的训练,而且也是有效实现新课程三维教学目标的重要途径。 二、变式教学中遵循的几个原则 2.1一题多解,触类旁通 通过一题多解,让学生从不同角度思考问题、解决问题,可以引起学生强烈的求异欲望,培养学生思维的灵活性。 【案例1】 如何复原一个被墨迹浸渍的等腰三角形? (只剩一个底角和一条底边) 学生给出的三种“补出”方法: ① 量出∠C度数,画出∠B=∠C,∠B与∠C的边相交得到顶点A; ② 作BC边上的中垂线,与∠C的一边相交得到顶点A; ③“对折”。 看画出的三角形是否为等腰三角形,由此引发全等三角形判定定理的证明。 这道题从不同的角度进行多向思维,把三角形全等的知识点有机地联系起来,发展了学生的多向思维能力。 学生总结出该题的三种常规的办法: ①作∠A的平分线,利用“角角边” ②过A作BC边的垂线,利用“角角边” ③作BC边上的中线,“边边角”不能证明 两种创造性的证法: ④假定AB>AC,由“大边对大角”得出矛盾 ⑤△ABC≌△ACB,应用“角边角” 2.2 一题多变,横向联想 通过一题多变,可避免题海战术,让学生掌握数学知识之间的联系,享受数学的相似美,提高学生归纳概括的能力。 【案例2】 如左图,有一块三角形余料ABC,它的边BC=120mm,高AD=80mm。 要把它加工成正方形零件,使正方形的一边在BC上,其余两个顶点 分别在AB、AC上。问加工成的正方形零件的边长为多少mm? 变式1 将“正方形PQMN”改为“矩形PQMN”。问矩形的长和宽分别为多少 时,所截得的矩形面积最大?最大面积是多少?余料的利用率是多少? 变式2 一块直角三角形木板的一条直角边AB长为1.5,面积为1.5,工 人师傅要把它加工成一个面积最大的正方形桌面,请甲乙两位同学设计 加工方案,甲设计方案如图(1)所示,乙设计方案如图(2)所示。你 认为哪位同学设计的方案较好?试说明理由。(加工损耗忽略不计,计 算结果可保留分数) 图(1) 图(2) 变式3 已知△ABC是直角三角形,∠ACB=90°,AC=80,BC=60,如图所 示,把边长分别为, , ,…的n个正方形依次放入△ABC中, 则第1个正方形的边长= ;第n个正方形的边长= (用含n的式子表示,n≥1)。 变式4 在Rt△ABC中,∠ACB=90°,AC=4,BC=3. (1)如图(1),四边形DEFG为Rt△ABC的内接正方形,求正方形的边长。 (2)如图(2),三角形内有并排的两个相等的正方形,它们组成的矩形内接于 Rt△ABC,求正方形的边长。 (3)如图(3),三角形内有并排的n个相等的正方形,它们组成的矩形内接 于Rt△ABC,求正方形的边长。 图(1) 图(2) 图(3) 2.3 一题多导,创设情境 对于大多数学生无从下手的题,在教学过程中可立足于学生的思维基础,分几个小问题引导,启发学生,创设良好的问题情境,使学生最大限度地参与解决问题的全过程。 【案例3】 在已知Rt△ABC中,∠ACB=90°,AC=6,BC=8。 (1)如图①,若半径为的⊙是Rt△ABC的内切圆,求。 (2)如图②,若半径为的两个等圆⊙、⊙外切,且⊙与AC、 AB相切,⊙与BC、AB相切,求。 (3)如图③,当n大于2的正整数时,若半径的n个等圆⊙、⊙、…、 ⊙依次外切,且⊙与AC、BC相切,⊙与BC、AB相切,⊙、⊙、 ⊙、…、⊙均与AB边相切,求. 图① 图② 图③ 通过该题学生既学到了新知识,又复习了旧知识,还找到了新旧知识之间的联系。由此还可以将这种类型的问题与现实问题情境相结合,真正做到活学活用。 变式 有一块直角三角形的白铁皮,其一条直角边和斜边长分别为60cm和 100cm。若从这块白铁皮上剪出一块尽可能大的圆铁皮,这块圆铁皮的 面积有多大?从余下的白铁皮中再剪出一块尽可能大的圆铁皮,这块圆 铁皮的半径是多少? 2.4 多题一解,异中求同 由问题的条件或结论的外形结构,联想到与其形式类似的有关题型,从而获得转化桥梁,打开解题思路。 【案例4】 如图1,一块铁皮呈锐角三角形,它的边BC=80cm,高AD=60cm, 要把它加工成矩形零件,使矩形的长、宽之比为2:1,并且矩形长 的一边位于BC上,另两个顶点分别在边AB、AC上。求这个矩形零 件的长与宽。 图1 图2 变式1 如图2,一块铁皮呈锐角三角形,它的边BC=80cm,高AD=60cm,要 把它加工成矩形零件,使矩形的长、宽之比为2:1,并且矩形长的一 边位于BC上,另两个顶点分别在边AB、AC上。(1)求这个矩形的周 长;(2)求这个矩形的面积;(3)求△APQ的面积。 变式2 如图3,一块铁皮呈三角形,∠BAC= 90°,要把它加工成矩形零件, 使矩形一边位于BC上,另两个顶点分别在边AB、AC上。试问:PS、 BS、CR之间有何关系?为什么? 图3 图4 变式3 如图4,一块铁皮呈锐角三角形,它的边BC=80cm,高AD=60cm,要 把它加工成矩形零件,矩形的一边位于BC上,另两个顶点分别在边AB、 AC上。求这个矩形面积的最大值。 三、变式教学要把握好三个“度 ” 3.1 变式的数量要“适度” 变式不是为了“变式”而变式,而是要根据教学或学习需要,遵循学生的认知规律而设计数学变式,使学生在理解知识的基础之上,把学到的知识转化为能力,形成技能技巧。因此,数学变式要正确把握变式的度,适度进行,适可而止。 3.2 变式的内容与难度要有“梯度” 变式习题的设置不仅要考虑到适当的量的安排,更要注重训练的梯度性,具有科学的循序渐进的训练程序,才能更有效地提高学生的学习效率。 【案例5】 如左图,由4个等腰直角三角形组成,其中第1个直角三角形的腰 长为1cm,求第4个直角三角形的斜边长度。 变式1 如右图,已知条件不变,求第5个等腰直角三角形的斜边长,并探究 第n个等腰直角三角形的斜边长为多少? 变式2 已知条件不变,求第6个等腰直角三角形直角边的长,并探究第n个 等腰直角三角形的直角边长为多少? 变式3 已知条件不变,求第6个等腰直角三角形的面积,并探究第n个等腰 直角三角形的面积为多少? 3.3 变式教学要提高学生的“参与度” 设计问题变式要注重一个“变”,不能简单的重复。变式题组的题目之间要有明显的差异,要使学生对每道题既感到熟悉,又觉得新鲜,让每一个学生都能够参与到数学思考中来。 【案例6】 如图1,在直线与x轴、y轴所围成的△AOB中,依次 放入腰长分别为, , ,…的n个等腰直角三角形,则 = ,= 。 (或:求,,,…的横坐标。) 图1 图2 变式1 如图2,在直线与x轴、y轴所围成的△AOB中,依次放入 边长分别为, , ,…的n个等边三角形,试猜想第n个等边 三角形的边长。 变式2 二次函数的图象如图所示,点位于坐标原点,点 ,,,…在y轴上,点,,,…,在所给二次函数位 于第一象限的图象上。若△,△,△,…, △为等边三角形,则△的边长= 。 设计数学变式问题要内涵丰富,境界开阔,给学生留下足够的思维空间。因此,所选范例必须具有典型性。一要注意知识之间的横向联系;二要具有延伸性,可进行一题多变;三要注意思维的创造性和深刻性。 四、数学变式教学的价值 变式教学是中国基础教育中的精华,值得我们去传承; 变式教学是一种十分重要的教学思想,值得我们去钻研; 变式教学是经实践证明的有效教学模式,值得我们去实践。 结束语 在教学中,我们既要有强烈的变式意识,娴熟的变式方法,更要遵循变式教学的规律,合理安排变式教学的内容。如果我们能够把握变式教学和变式训练的正确方法和尺度,在数学教学中恰当使用变式教学和变式训练,不仅能够帮助学生从“题海战役”中解放出来,还对培养学生创造性思维,激发学生学习数学的兴趣,将起到比较积极的作用。相信大家一定可以取得理想的教学效果。 参考文献: [1] 李善良. 现代认知观下的数学概念学习与教学. 江苏教育出版社,2005. [2] 张奠宙. 中国数学双基教学. 上海教育出版社, 2006. [3] 许灵飞. 变式教学在初中数学教学中的应用. 数学学习与研究, 2010.3 [4] 郑毓信. 变式理论的必要发展. 中学数学月刊, 2006(1). [5] 张奠宙,守乃庆. 数学教育概论. 北京:高等教育出版社,2004 收集于网络,如有侵权请联系管理员删除- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 浅谈 初中 数学 教学 中的 提纲
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精***】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精***】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文