初中数学用因式分解法解一元二次方程及答案培训讲学.doc
《初中数学用因式分解法解一元二次方程及答案培训讲学.doc》由会员分享,可在线阅读,更多相关《初中数学用因式分解法解一元二次方程及答案培训讲学.doc(12页珍藏版)》请在咨信网上搜索。
初中数学用因式分解法解一元二次方程及答案 精品文档 初中数学用因式分解法解一元二次方程 一.选择题(共7小题) 1.(2013秋•广州校级期中)用因式分解法解一元二次方程x(x﹣1)﹣2(1﹣x)=0,正确的步骤是( ) A. (x+1)(x+2)=0 B. (x+1)(x﹣2)=0 C. (x﹣1)(x﹣2)=0 D. (x﹣1)(x+2)=0 2.(2012春•萧山区校级期中)解一元二次方程2x2+5x=0的最佳解法是( ) A. 因式分解法 B. 开平方法 C. 配方法 D. 公式法 3.解一元二次方程(y+2)2﹣2(y+2)﹣3=0时,最简单的方法是( ) A. 直接开平方法 B. 因式分解法 C. 配方法 D. 公式法 4.(2015•东西湖区校级模拟)一元二次方程x2﹣2x=0的解是( ) A. 0 B. 2 C. 0,﹣2 D. 0,2 5.(2014•平顶山二模)一元二次方程﹣x2=3x的解是( ) A. 3 B. ﹣3 C. 3,0 D. ﹣3,0 6.(2011春•招远市期中)一元二次方程x2+c=0实数解的条件是( ) A. c≤0 B. c<0 C. c>0 D. c≥0 7.(2011•北京模拟)若x=﹣1是一元二次方程x2﹣ax=0的一个解,则a的值( ) A. ﹣1 B. 1 C. 0 D. ±1 二.填空题(共3小题) 8.(2012秋•开县校级月考)一元二次方程3x2﹣4x﹣2=0的解是 . 9.(2012•铜仁地区)一元二次方程x2﹣2x﹣3=0的解是 . 10.(2014秋•禹州市期中)一元二次方程(4﹣2x)2﹣36=0的解是 . 三.解答题(共10小题) 11.(2006秋•阜宁县校级月考)用指定的方法解下列一元二次方程: (1)2x2﹣4x+1=0(配方法); (2)3x(x﹣1)=2﹣2x(因式分解法); (3)x2﹣x﹣3=0(公式法). 12.用因式分解法解下列关于x的一元二次方程. (1)x2+x﹣k2x=0 (2)x2﹣2mx+m2﹣n2=0. 13.(2008•温州)(1)计算:; (2)我们已经学习了一元二次方程的四种解法:因式分解法,开平方法,配方法和公式法.请从以下一元二次方程中任选一个,并选择你认为适当的方法解这个方程. ①x2﹣3x+1=0;②(x﹣1)2=3;③x2﹣3x=0;④x2﹣2x=4. 14.用因式分解法解下列一元二次方程: (1)5x2=x (2)4(2x+3)﹣(2x+3)2=0 (3)(x﹣2)2=(2x+3)2 (4)(x+1)2=(x﹣1)2. 15.因式分解法解方程:3x2﹣12x=﹣12. 16.用因式分解法解方程:x2﹣9x+18=0. 17.用因式分解法解方程:12x2+x﹣6=0. 18.(2013秋•黄陂区校级月考)用因式分解法解方程:3(x﹣5)2=2(5﹣x) 19.(2013秋•富顺县校级期中)用因式分解法解方程(x+3)2=5(x+3) 20.因式分解法解一元二次方程.+1﹣=. 初中数学用因式分解法解一元二次方程 参考答案与试题解析 一.选择题(共7小题) 1.(2013秋•广州校级期中)用因式分解法解一元二次方程x(x﹣1)﹣2(1﹣x)=0,正确的步骤是( ) A. (x+1)(x+2)=0 B. (x+1)(x﹣2)=0 C. (x﹣1)(x﹣2)=0 D. (x﹣1)(x+2)=0 考点: 解一元二次方程-因式分解法. 专题: 计算题. 分析: 将方程左边第二项提取﹣1变形后,提取公因式化为积的形式,即可得到结果. 解答: 解:方程x(x﹣1)﹣2(1﹣x)=0, 变形得:x(x﹣1)+2(x﹣1)=0, 分解因式得:(x﹣1)(x+2)=0, 故选D 点评: 此题考查了解一元二次方程﹣因式分解法,熟练掌握此解法是解本题的关键. 2.(2012春•萧山区校级期中)解一元二次方程2x2+5x=0的最佳解法是( ) A. 因式分解法 B. 开平方法 C. 配方法 D. 公式法 考点: 解一元二次方程-因式分解法.菁优网版权所有 专题: 计算题. 分析: 方程左边缺少常数项,右边为0,左边可以提公因式x,运用因式分解法解方程. 解答: 解:方程2x2+5x=0左边可提公因式x,分解为两个一次因式的积,而右边为0,运用因式分解法. 故选A. 点评: 本题考查了解一元二次方程的解法的运用.解方程时,要根据方程左右两边的特点,合理地选择解法,可使运算简便. 3.解一元二次方程(y+2)2﹣2(y+2)﹣3=0时,最简单的方法是( ) A. 直接开平方法 B. 因式分解法 C. 配方法 D. 公式法 考点: 解一元二次方程-因式分解法.菁优网版权所有 分析: 此题考查了数学思想中的整体思想,把(y+2)看做一个整体,设(y+2)为x,则原方程可变为x2﹣2x﹣3=0,可以发现采用因式分解法最简单. 解答: 解:设(y+2)=x 原方程可变为x2﹣2x﹣3=0, ∴(x﹣3)(x+1)=0 ∴ 采用因式分解法最简单. 故选B 点评: 此题考查了数学思想中的整体思想,也就是换元思想,解题的关键是要充分理解一元二次方程各种解法的应用条件. 4.(2015•东西湖区校级模拟)一元二次方程x2﹣2x=0的解是( ) A. 0 B. 2 C. 0,﹣2 D. 0,2 考点: 解一元二次方程-因式分解法.菁优网版权所有 分析: 先提公因式x,然后根据“两式相乘值为0,这两式中至少有一式值为0.”进行求解. 解答: 解:原方程化为:x(x﹣2)=0, 解得x1=0,x2=2.故选D. 点评: 本题考查了解一元二次方程的方法,当把方程通过移项把等式的右边化为0后方程的左边能因式分解时,一般情况下是把左边的式子因式分解,再利用积为0的特点解出方程的根.因式分解法是解一元二次方程的一种简便方法,要会灵活运用. 5.(2014•平顶山二模)一元二次方程﹣x2=3x的解是( ) A. 3 B. ﹣3 C. 3,0 D. ﹣3,0 考点: 解一元二次方程-因式分解法.菁优网版权所有 专题: 计算题. 分析: 方程移项后,右边化为0,左边化为积的形式,然后利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解. 解答: 解:方程变形得:x2+3x=0,即x(x+3)=0, 解得:x=0或x=﹣3, 故选D 点评: 此题考查了解一元二次方程﹣因式分解法,熟练掌握因式分解的方法是解本题的关键. 6.(2011春•招远市期中)一元二次方程x2+c=0实数解的条件是( ) A. c≤0 B. c<0 C. c>0 D. c≥0 考点: 根的判别式.菁优网版权所有 专题: 计算题. 分析: 由一元二次方程有实数根,得到根的判别式大于等于0,列出关于c的不等式,求出不等式的解集即可得到c的范围. 解答: 解:∵一元二次方程x2+c=0有实数解, ∴ △=b2﹣4ac=﹣4c≥0, 解得:c≤0. 故选A 点评: 此题考查了一元二次方程根的判别式,根的判别式的值大于0,方程有两个不相等的实数根;根的判别式等于0,方程有两个相等的实数根;根的判别式小于0,方程没有实数根. 7.(2011•北京模拟)若x=﹣1是一元二次方程x2﹣ax=0的一个解,则a的值( ) A. ﹣1 B. 1 C. 0 D. ±1 考点: 一元二次方程的解.菁优网版权所有 分析: 由方程的解的定义,将x=﹣1代入方程,即可求得а的值 解答: 解:∵ ﹣1是关于x的方程:x2﹣ax=0的一个解,∴ 1+a=0,解得a=﹣1, 故选A. 点评: 本题主要考查了方程的解的定义,把求未知系数的问题转化为方程求解的问题. 二.填空题(共3小题) 8.(2012秋•开县校级月考)一元二次方程3x2﹣4x﹣2=0的解是 . 考点: 解一元二次方程-公式法.菁优网版权所有 分析: 利用公式法解此一元二次方程的知识,即可求得答案. 解答: 解:∵ a=3,b=﹣4,c=﹣2, ∴ △ =b2﹣4ac=(﹣4)2﹣4×3×(﹣2)=40, ∴ x== =. 故答案为:. 点评: 此题考查了公式法解一元二次方程的知识.此题难度不大,注意熟记公式是关键. 9.(2012•铜仁地区)一元二次方程x2﹣2x﹣3=0的解是 x1=3,x2=﹣1 . 考点: 解一元二次方程-因式分解法.菁优网版权所有 专题: 计算题;压轴题. 分析: 根据方程的解x1x2=﹣3,x1+x2=2可将方程进行分解,得出两式相乘的形式,再根据“两式相乘值为0,这两式中至少有一式值为0”来解题. 解答: 解:原方程可化为:(x﹣3)(x+1)=0, ∴ x﹣3=0或x+1=0, ∴ x1=3,x2=﹣1. 点评: 本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.本题运用的是因式分解法. 10.(2014秋•禹州市期中)一元二次方程(4﹣2x)2﹣36=0的解是 x1=﹣1,x2=5 . 考点: 解一元二次方程-直接开平方法.菁优网版权所有 分析: 先移项,写成(x+a)2=b的形式,然后利用数的开方解答. 解答: 解:移项得,(4﹣2x)2=36, 开方得,4﹣2x=±6, 解得x1=﹣1,x2=5. 故答案为x1=﹣1,x2=5. 点评: 本题考查了解一元二次方程﹣直接开平方法,注意: (1)用直接开方法求一元二次方程的解的类型有:x2=a(a≥0);ax2=b(a,b同号且a≠0);(x+a)2=b(b≥0);a(x+b)2=c(a,c同号且a≠0).法则:要把方程化为“左平方,右常数,先把系数化为1,再开平方取正负,分开求得方程解”. (2)运用整体思想,会把被开方数看成整体. (3)用直接开方法求一元二次方程的解,要仔细观察方程的特点. 三.解答题(共10小题) 11.(2006秋•阜宁县校级月考)用指定的方法解下列一元二次方程: (1)2x2﹣4x+1=0(配方法); (2)3x(x﹣1)=2﹣2x(因式分解法); (3)x2﹣x﹣3=0(公式法). 考点: 解一元二次方程-配方法;解一元二次方程-公式法;解一元二次方程-因式分解法.菁优网版权所有 专题: 计算题. 分析: (1)用配方法,用配方法解方程,首先二次项系数化为1,移项,把常数项移到等号的右边,然后在方程的左右两边同时加上一次项系数的一半,即可使左边是完全平方式,右边是常数,直接开方即可求解; (2)用因式分解法,用提公因式法解方程,方程左边可以提取公因式x﹣1,即可分解,转化为两个式子的积是0的形式,从而转化为两个一元一次方程求解; (3)利用公式法即可求解. 解答: 解:(1)2x2﹣4x+1=0 x2﹣2x+=0 (x﹣1)2= ∴x1=1+,x2=1﹣; (2)3x(x﹣1)=2﹣2x 3x(x﹣1)+2(x﹣1)=0 (x﹣1)(3x+2)=0 ∴x1=1,x2=﹣; (3)x2﹣x﹣3=0 x= x1=,x2=. 点评: 本题考查了解一元二次方程的方法,因式分解法是解一元二次方程的一种简便方法,要会灵活运用.当化简后不能用分解因式的方法即可考虑求根公式法,此法适用于任何一元二次方程. 12.用因式分解法解下列关于x的一元二次方程. (1)x2+x﹣k2x=0 (2)x2﹣2mx+m2﹣n2=0. 考点: 解一元二次方程-因式分解法.菁优网版权所有 专题: 计算题. 分析: 两方程左边分解因式后,利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解. 解答: 解:(1)分解因式得:x(x+1﹣k2)=0, 解得:x1=0,x2=k2﹣1; (2)分解因式得:(x﹣m+n)(x﹣m﹣n)=0, 解得:x1=m﹣n,x2=m+n. 点评: 此题考查了解一元二次方程﹣因式分解法,熟练掌握因式分解的方法是解本题的关键. 13.(2008•温州)(1)计算:; (2)我们已经学习了一元二次方程的四种解法:因式分解法,开平方法,配方法和公式法.请从以下一元二次方程中任选一个,并选择你认为适当的方法解这个方程. ①x2﹣3x+1=0;②(x﹣1)2=3;③x2﹣3x=0;④x2﹣2x=4. 考点: 实数的运算;解一元二次方程-直接开平方法;解一元二次方程-配方法;解一元二次方程-公式法;解一元二次方程-因式分解法.菁优网版权所有 专题: 计算题. 分析: (1)本题涉及零指数幂还有绝对值,解答时要注意它们的性质. (2)①x2﹣3x+1=0采用公式法; ②(x﹣1)2=3采用直接开平方法; ③x2﹣3x=0采用因式分解法; ④x2﹣2x=4采用配方法. 解答: 解:(1); (2)①x2﹣3x+1=0, 解得; ②(x﹣1)2=3, ∴x﹣1=或x﹣1=﹣ 解得x1=1+,x2=1﹣ ③x2﹣3x=0, x(x﹣3)=0 解得x1=0,x2=3; ④x2﹣2x=4, 即x2﹣2x﹣4=0 x2﹣2x=4 即x2﹣2x+1=5 (x﹣1)2=5 解得x1=,. 点评: 本题考查实数的综合运算能力,解决此类题目的关键熟记零指数幂和绝对值的运算.解一元二次方程时要注意选择适宜的解题方法. 14.用因式分解法解下列一元二次方程: (1)5x2=x (2)4(2x+3)﹣(2x+3)2=0 (3)(x﹣2)2=(2x+3)2 (4)(x+1)2=(x﹣1)2. 考点: 解一元二次方程-因式分解法.菁优网版权所有 分析: (1)移项后提公因式即可; (2)移项后因式分解即可; (3)移项后因式分解即可; (4)直接开平方即可解答. 解答: 解:(1)5x2=x, 移项得5x2﹣x=0, 提公因式得x(5x﹣)=0, 解得x1=0,x2=. (2)4(2x+3)﹣(2x+3)2=0, 提公因式得,(2x+3)[4﹣(2x+3)]=0, 解得,2x+3=0,1﹣2x=0, x1=﹣,x2=. (3)(x﹣2)2=(2x+3)2, 移项得,(x﹣2)2﹣(2x+3)2=0, 因式分解得,(x﹣2﹣2x﹣3)(x﹣2+2x+3)=0, 则﹣x﹣5=0,3x+1=0, 解得,x1=﹣5,x2=﹣; (4)(x+1)2=(x﹣1)2, 直接开平方得(x+1)=±(x﹣1), 则(x+1)=(x﹣1),(x+1)=﹣(x﹣1), 解得x1=﹣5,x2=﹣. 点评: 本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法. 15.因式分解法解方程:3x2﹣12x=﹣12. 考点: 解一元二次方程-因式分解法.菁优网版权所有 分析: 先移项,再两边都除以3,分解因式,即可得出两个一元一次方程,求出方程的解即可. 解答: 解:3x2﹣12x=﹣12, 移项得:3x2﹣12x+12=0, x2﹣4x+4=0, (x﹣2)(x﹣2)=0, x﹣2=0,x﹣2=0, x1=x2=2. 点评: 本题考查了解一元二次方程的应用,解此题的关键是能把一元二次方程转化成一元一次方程,题目比较好,难度适中. 16.用因式分解法解方程:x2﹣9x+18=0. 考点: 解一元二次方程-因式分解法.菁优网版权所有 分析: 分解因式,即可得出两个一元一次方程,求出方程的解即可. 解答: 解:x2﹣9x+18=0, (x﹣3)(x﹣6)=0, x﹣3=0,x﹣6=0, x1=3,x2=6. 点评: 本题考查了解一元二次方程的应用,解此题的关键是能把一元二次方程转化成一元一次方程. 17.用因式分解法解方程:12x2+x﹣6=0. 考点: 解一元二次方程-因式分解法.菁优网版权所有 分析: 分解因式,即得出两个一元一次方程,求出方程的解即可. 解答: 解:分解因式得:(3x﹣2)(4x+3)=0, 3x﹣2=0,4x+3=0, x1=,x2=﹣. 点评: 本题考查了解一元二次方程的应用,解此题的关键是能把一元二次方程转化成一元一次方程. 18.(2013秋•黄陂区校级月考)用因式分解法解方程:3(x﹣5)2=2(5﹣x) 考点: 解一元二次方程-因式分解法.菁优网版权所有 专题: 因式分解. 分析: 先移项,然后提公因式,这样转化为两个一元一次方程,解一元一次方程即可. 解答: 解:移项,得3(x﹣5)2+2(x﹣5)=0, ∴(x﹣5)(3x﹣13)=0, ∴x﹣5=0或3x﹣13=0, 所以x1=5,x2=. 点评: 本题考查了利用因式分解法把一元二次方程转化为两个一元一次方程求解的能力.要熟练掌握因式分解的方法. 19.(2013秋•富顺县校级期中)用因式分解法解方程(x+3)2=5(x+3) 考点: 实数范围内分解因式.菁优网版权所有 分析: 利用因式分解法进行解方程得出即可. 解答: 解:(x+3)2﹣5(x+3)=0, (x+3)[(x+3)﹣5]=0, ∴(x+3)=0或(x+3)﹣5=0, 解得:x1=﹣3,x2=2. 点评: 此题主要考查了因式分解法解一元二次方程,正确分解因式是解题关键. 20.因式分解法解一元二次方程.+1﹣= . 考点: 解一元二次方程-因式分解法.菁优网版权所有 分析: 首先移项,然后利用平方差公式使方程的左边进行因式分解,再进行去分母,最后解两个一元一次方程即可. 解答: 解:∵﹣ = ﹣1, ∴﹣= , ∴= , ∴= , ∴﹣8(t﹣2)(2t+1)=5(t﹣2)(2t+1), ∴13(t﹣2)(2t+1)=0, ∴t﹣2=0或2t+1=0, ∴t1=2,t2=﹣. 点评: 本题主要考查了因式分解法解一元二次方程的知识,解答本题的关键是熟练掌握平方差公式的应用,此题难度不大. 收集于网络,如有侵权请联系管理员删除- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 初中 数学 因式 解法 一元 二次方程 答案 培训 讲学
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【丰****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【丰****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【丰****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【丰****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文