高中数学竞赛专题讲座(解析几何)资料.doc
《高中数学竞赛专题讲座(解析几何)资料.doc》由会员分享,可在线阅读,更多相关《高中数学竞赛专题讲座(解析几何)资料.doc(88页珍藏版)》请在咨信网上搜索。
1、高中数学竞赛专题讲座(解析几何)精品文档高中数学竞赛专题讲座(解析几何)一、基础知识1椭圆的定义,第一定义:平面上到两个定点的距离之和等于定长(大于两个定点之间的距离)的点的轨迹,即|PF1|+|PF2|=2a (2a|F1F2|=2c).第二定义:平面上到一个定点的距离与到一条定直线的距离之比为同一个常数e(0e1)的点的轨迹(其中定点不在定直线上),即(0eb0),参数方程为(为参数)。若焦点在y轴上,列标准方程为 (ab0)。3椭圆中的相关概念,对于中心在原点,焦点在x轴上的椭圆,a称半长轴长,b称半短轴长,c称为半焦距,长轴端点、短轴端点、两个焦点的坐标分别为(a, 0), (0, b
2、), (c, 0);与左焦点对应的准线(即第二定义中的定直线)为,与右焦点对应的准线为;定义中的比e称为离心率,且,由c2+b2=a2知0eb0), F1(-c, 0), F2(c, 0)是它的两焦点。若P(x, y)是椭圆上的任意一点,则|PF1|=a+ex, |PF2|=a-ex.5几个常用结论:1)过椭圆上一点P(x0, y0)的切线方程为;2)斜率为k的切线方程为;3)过焦点F2(c, 0)倾斜角为的弦的长为。6双曲线的定义,第一定义:满足|PF1|-|PF2|=2a(2a0)的点P的轨迹;第二定义:到定点的距离与到定直线距离之比为常数e(1)的点的轨迹。7双曲线的方程:中心在原点,焦
3、点在x轴上的双曲线方程为,参数方程为(为参数)。焦点在y轴上的双曲线的标准方程为。8双曲线的相关概念,中心在原点,焦点在x轴上的双曲线(a, b0),a称半实轴长,b称为半虚轴长,c为半焦距,实轴的两个端点为(-a, 0), (a, 0). 左、右焦点为F1(-c,0), F2(c, 0),对应的左、右准线方程分别为离心率,由a2+b2=c2知e1。两条渐近线方程为,双曲线与有相同的渐近线,它们的四个焦点在同一个圆上。若a=b,则称为等轴双曲线。9双曲线的常用结论,1)焦半径公式,对于双曲线,F1(-c,0), F2(c, 0)是它的两个焦点。设P(x,y)是双曲线上的任一点,若P在右支上,则
4、|PF1|=ex+a, |PF2|=ex-a;若P(x,y)在左支上,则|PF1|=-ex-a,|PF2|=-ex+a.2) 过焦点的倾斜角为的弦长是。10抛物线:平面内与一个定点F和一条定直线l的距离相等的点的轨迹叫做抛物线,点F叫焦点,直线l叫做抛物线的准线。若取经过焦点F且垂直于准线l的直线为x轴,x轴与l相交于K,以线段KF的垂直平分线为y轴,建立直角坐标系,设|KF|=p,则焦点F坐标为,准线方程为,标准方程为y2=2px(p0),离心率e=1.11抛物线常用结论:若P(x0, y0)为抛物线上任一点,1)焦半径|PF|=;2)过点P的切线方程为y0y=p(x+x0);3)过焦点倾斜
5、角为的弦长为。12极坐标系,在平面内取一个定点为极点记为O,从O出发的射线为极轴记为Ox轴,这样就建立了极坐标系,对于平面内任意一点P,记|OP|=,xOP=,则由(,)唯一确定点P的位置,(,)称为极坐标。13圆锥曲线的统一定义:到定点的距离与到定直线的距离的比为常数e的点P,若0e1,则点P的轨迹为双曲线的一支;若e=1,则点P的轨迹为抛物线。这三种圆锥曲线统一的极坐标方程为。二、方法与例题1与定义有关的问题。例1 已知定点A(2,1),F是椭圆的左焦点,点P为椭圆上的动点,当3|PA|+5|PF|取最小值时,求点P的坐标。解 见图11-1,由题设a=5, b=4, c=3,.椭圆左准线的
6、方程为,又因为,所以点A在椭圆内部,又点F坐标为(-3,0),过P作PQ垂直于左准线,垂足为Q。由定义知,则|PF|=|PQ|。所以3|PA|+5|PF|=3(|PA|+|PF|)=3(|PA|+|PQ|)3|AM|(AM左准线于M)。所以当且仅当P为AM与椭圆的交点时,3|PA|+5|PF|取最小值,把y=1代入椭圆方程得,又xb时,轨迹为焦点在x轴上的两条等轴双曲线;当a0, b0)的右焦点F作B1B2轴,交双曲线于B1,B2两点,B2与左焦点F1连线交双曲线于B点,连结B1B交x轴于H点。求证:H的横坐标为定值。证明 设点B,H,F的坐标分别为(asec,btan), (x0, 0),
7、(c, 0),则F1,B1,B2的坐标分别为(-c, 0), (c, ), (c, ),因为F1,H分别是直线B2F,BB1与x轴的交点,所以 所以 。由得代入上式得即 (定值)。注:本例也可借助梅涅劳斯定理证明,读者不妨一试。例7 设抛物线y2=2px(p0)的焦点为F,经过点F的直线交抛物线于A,B两点,点C在准线上,且BC/x轴。证明:直线AC经过定点。证明 设,则,焦点为,所以,。由于,所以y2-y1=0,即=0。因为,所以。所以,即。所以,即直线AC经过原点。例8 椭圆上有两点A,B,满足OAOB,O为原点,求证:为定值。证明 设|OA|=r1,|OB|=r2,且xOA=,xOB=,
8、则点A,B的坐标分别为A(r1cos, r1sin),B(-r2sin,r2cos)。由A,B在椭圆上有即 +得(定值)。4最值问题。例9 设A,B是椭圆x2+3y2=1上的两个动点,且OAOB(O为原点),求|AB|的最大值与最小值。解 由题设a=1,b=,记|OA|=r1,|OB|=r2,,参考例8可得=4。设m=|AB|2=,因为,且a2b2,所以,所以br1a,同理br2a.所以。又函数f(x)=x+在上单调递减,在上单调递增,所以当t=1即|OA|=|OB|时,|AB|取最小值1;当或时,|AB|取最大值。例10 设一椭圆中心为原点,长轴在x轴上,离心率为,若圆C:1上点与这椭圆上点
9、的最大距离为,试求这个椭圆的方程。解 设A,B分别为圆C和椭圆上动点。由题设圆心C坐标为,半径|CA|=1,因为|AB|BC|+|CA|=|BC|+1,所以当且仅当A,B,C共线,且|BC|取最大值时,|AB|取最大值,所以|BC|最大值为因为;所以可设椭圆半长轴、半焦距、半短轴长分别为2t,t,椭圆方程为,并设点B坐标为B(2tcos,tsin),则|BC|2=(2tcos)2+=3t2sin2-3tsin+4t2=-3(tsin+)2+3+4t2.若,则当sin=-1时,|BC|2取最大值t2+3t+,与题设不符。若t,则当sin=时,|BC|2取最大值3+4t2,由3+4t2=7得t=1
10、.所以椭圆方程为。例11在平面直角坐标系上,给定抛物线:,实数、满足,是方程的两根,记。 过点作的切线交轴于点。证明:对线段上的任一点,有; 设是定点,其中、满足,过作的两条切线,切点分别为,、与轴分别交于、,线段上异于两端点的点集记为。证明:; 设,当点取遍时,求的最小值(记为)和最大值(记为)。解: 证明:由已知知点在上,过点的的切线的斜率为直线的方程为:设点为线段上的任一点方程,即方程的两根为线段上的任一点 当时, 当时此时当时此时 当时, 当时此时当时此时综上所述,对线段上的任一点,有。 证明:由已知有直线的方程为:由已知有直线的方程为:解得 当时,由“”有: 当时,由“”有:综上所述
11、, 当时,设过点的的切线的斜率为,其中为切点处的横坐标该切线方程为:为该切线上的点 当时,即 当时,又综上所述,又由“”有:5直线与二次曲线。例12 若抛物线y=ax2-1上存在关于直线x+y=0成轴对称的两点,试求a的取值范围。解 抛物线y=ax2-1的顶点为(0,-1),对称轴为y轴,存在关于直线x+y=0对称两点的条件是存在一对点P(x1,y1),(-y1,-x1),满足y1=a且-x1=a(-y1)2-1,相减得x1+y1=a(),因为P不在直线x+y=0上,所以x1+y10,所以1=a(x1-y1),即x1=y1+所以此方程有不等实根,所以,求得,即为所求。例13,已知抛物线的准线与
12、轴交于点,过点作直线与抛物线交于两点,若的垂直平分线与轴交于,问能否是直角三角形?若能,求的值,若不能,请说明理由解:1)由题知,M(-1,0),因为直线AB的斜率存在,故可设AB方程为:,AB的中点,由所以,所以AB的垂直平分线方程为:令得如果三角形ABE为直角三角形,因EA=EB,所以角AEB为直角,且,所以当时,三角形ABE为直角三角形.例14.设直线过点P(0,3),和椭圆顺次交于A、B两点,试求的取值范围.解1:当直线垂直于x轴时,可求得;当与x轴不垂直时,设,直线的方程为:,代入椭圆方程,消去得解之得 因为椭圆关于y轴对称,点P在y轴上,所以只需考虑的情形.当时,所以 =.由 ,
13、解得 ,所以 ,综上 .解2:设直线的方程为:,代入椭圆方程,消去得 (*)则令,则,在(*)中,由判别式可得 ,从而有 ,所以 ,解得 .结合得. 综上,.例15已知双曲线,直线过点,斜率为,当时,双曲线的上支上有且仅有一点B到直线的距离为,试求的值及此时点B的坐标。解:设点为双曲线C上支上任一点,则点M到直线的距离为: 于是,问题即可转化为如上关于的方程.由于,所以,从而有于是关于的方程 由可知: 方程的二根同正,故恒成立,于是等价于.由如上关于的方程有唯一解,得其判别式,就可解得 .点评:上述解法紧扣解题目标,不断进行问题转换,充分体现了全局观念与整体思维的优越性.例16已知椭圆C:和点
14、P(4,1),过P作直线交椭圆于A、B两点,在线段AB上取点Q,使,求动点Q的轨迹所在曲线的方程.解:设,则由可得:,解之得: (1)设直线AB的方程为:,代入椭圆C的方程,消去得出关于 x的一元二次方程: (2) 代入(1),化简得: (3)与联立,消去得:在(2)中,由,解得 ,结合(3)可求得 故知点Q的轨迹方程为: ().例17.(1991年高考)双曲线的中心在坐标原点O,焦点在x轴上,过双曲线右焦点且斜率为的直线交双曲线于P、Q两点若OPOQ,|PQ|=4,求双曲线的方程本小题考查双曲线性质,两点距离公式,两直线垂直条件,代数二次方程等基本知识,以及综合分析能力满分12分解法一:设双
15、曲线的方程为=1依题意知,点P,Q的坐标满足方程组 将式代入式,整理得(5b23a2)x2+6a2cx(3a2c2+5a2b2)=0 3分设方程的两个根为x1,x2,若5b23a2=0,则=,即直线与双曲线的两条渐近线中的一条平行,故与双曲线只能有一个交点同,与题设矛盾,所以5b23a20根据根与系数的关系,有 6分由于P、Q在直线y=(xc)上,可记为P (x1,(x1c),Q (x2,(x2c)由OPOQ得=1,整理得3c(x1+x2)8x1x23c2=0 将,式及c2=a2+b2代入式,并整理得3a4+8a2b23b4=0,(a2+3b2)(3a2b2)=0因为a2+3b20,解得b2=
16、3a2,所以 c=2a 8分由|PQ|=4,得(x2x1)2=(x2c)(x1c)2=42整理得(x1+x2)24x1x210=0将,式及b2=3a2,c=2a代入式,解得a2=1 10分将a2 =1代入b2=3a2得b2=3故所求双曲线方程为x2=1 12分解法二:式以上同解法一 4分解方程得x1=,x2= 6分由于P、Q在直线y=(xc)上,可记为P (x1,(x1c),Q (x2,(x2c)由OPOQ,得x1 x2(x1c)(x2c)=0 将式及c2=a2b2代入式并整理得3a4+8a2b23b4=0,即 (a2+3b2)(3a2b2)=0因a2+3b20,解得b2=3a2 8分由|PQ
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高中数学 竞赛 专题讲座 解析几何 资料
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【天****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【天****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。