工程流体力学答案(陈卓如)讲课稿.doc
《工程流体力学答案(陈卓如)讲课稿.doc》由会员分享,可在线阅读,更多相关《工程流体力学答案(陈卓如)讲课稿.doc(59页珍藏版)》请在咨信网上搜索。
1、工程流体力学答案(陈卓如)精品文档第一章陈书1-15 图轴在滑动轴承中转动,已知轴的直径,轴承宽度,间隙。间隙中充满动力学粘性系数的润滑油。若已知轴旋转时润滑油阻力的损耗功率,试求轴承的转速当转速时,消耗功率为多少?(轴承运动时维持恒定转速)【解】轴表面承受的摩擦阻力矩为:其中剪切应力:表面积:因为间隙内的流速可近似看作线性分布,而且对粘性流体,外表面上应取流速为零的条件,故径向流速梯度:其中转动角速度:所以:维持匀速转动时所消耗的功率为:所以:将:代入上式,得:当时所消耗的功率为:陈书1-16两无限大平板相距平行(水平)放置,其间充满动力学粘性系数的甘油,在两平板间以的恒定速度水平拖动一面积
2、为的极薄平板。如果薄平板保持在中间位置需要用多大的力?如果置于距一板10mm的位置,需多大的力?【解】平板匀速运动,受力平衡。题中给出平板“极薄”,故无需考虑平板的体积、重量及边缘效应等。本题应求解的水平方向的拖力。水平方向,薄板所受的拖力与流体作用在薄板上下表面上摩擦力平衡。作用于薄板上表面的摩擦力为:题中未给出流场的速度分布,且上下两无限大平板的间距不大,不妨设为线性分布。设薄板到上面平板的距离为h,则有:所以:同理,作用于薄板下表面的摩擦力为:维持薄板匀速运动所需的拖力:当薄板在中间位置时,将、和代入,得:如果薄板置于距一板(不妨设为上平板)10mm的位置,则:代入上式得:陈书1-17一
3、很大的薄板放在宽水平缝隙的中间位置,板上下分别放有不同粘度的油,一种油的粘度是另一种的2倍。当以的恒定速度水平拖动平板时,每平方米受的总摩擦力为。求两种油的粘度。【解】平板匀速运动,受力平衡。题中给出 薄板”,故无需考虑平板的体积、重量及边缘效应等。本题应求解的水平方向的拖力。水平方向,薄板所受的拖力与流体作用在薄板上下表面上摩擦力平衡。不妨先设平板上面油的粘度为,平板下面油的粘度为。作用于薄板上表面的摩擦力为:题中未给出流场的速度分布,且上下两无限大平板的间距不大,不妨设为线性分布。薄板到上面平板的距离为,所以:所以:同理,作用于薄板下表面的摩擦力为:维持薄板匀速运动所需的拖力:所以:将、和
4、代入,得平板上面油的粘度为:平板下面油的粘度为:从以上求解过程可知,若设平板下面油的粘度为,平板上面油的粘度为,可得出同样的结论。陈书1-22 图示滑动轴承宽,轴径,间隙,间隙中充满了动力学粘性系数的润滑油。试求当轴以的恒定转速转动时所需的功率。(注:不计其他的功率消耗)【解】轴表面承受的摩擦阻力矩为:其中剪切应力:表面积:因为间隙内的流速可近似看作线性分布,而且对粘性流体,外表面上应取流速为零的条件,故径向流速梯度:其中转动角速度:所以:维持匀速转动时所消耗的功率为:将:代入上式,得消耗的功率为: 陈书1-23图示斜面倾角,一块质量为25kg,边长为1m的正方形平板沿斜面等速下滑,平板和斜面
5、间油液厚度为。若下滑速度,求油的粘度。解由平板等速下滑,知其受力平衡。沿斜坡表面方向,平板下表面所受油液的粘滞力与重力沿斜面的分量平衡。平板下表面承受的摩擦阻力为:其中剪切应力:因为间隙内的流速可近似看作线性分布,而且对粘性流体,外表面上应取流速为零的条件,故垂直于斜坡表面方向的流速梯度为:所以:而重力在平行于斜面方向的分量为:因:故:整理得:将:代入上式,得: 第二章陈书2-8容器中盛有密度不同的两种液体,问测压管A及测压管B的液面是否和容器中的液面O-O齐平?为什么?若不齐平,则A、B测压管液面哪个高?解依题意,容器内液体静止。测压管A与上层流体连通,且上层流体和测压管A均与大气连通,故A
6、测压管的液面与液面O-O齐平。测压管B与上下层流体连通,其根部的压强为:其中为上层液体的厚度,为液体分界面到B管根部的垂向距离,为大气压因测压管B与大气连通,其根部的压强又可表示为:其中h为B管内气液界面到B管根部的垂向距离所以:由此可知:若,B测压管的液面低于A测压管的液面和O-O面;若,B测压管的液面高A测压管的液面和O-O面;若,A、B测压管的液面和O-O面三者平齐。又因为密度为的液体稳定在上层,故。陈书2-12容器中有密度为和的两种液体,试绘出AB面上的压强分布图。解令上、下层液体的厚度分别为和,取垂直向下的方向为z轴的正方向,并将原点设在自由表面上,可写出AB表面上压强的表达式:整理
7、得:陈书2-24直径D=1.2m,L=2.5的油罐车,内装密度的石油,油面高度为h=1m,以的加速度水平运动。试确定油罐车侧盖 A和B上所受到的油液的作用力。解取x坐标水平向右,y坐标垂直纸面向内,z坐标垂直向上,原点定在油罐的中轴线上。油液受到的体积力为:由欧拉方程积分可得:根据题意及所选的坐标系,当时,故:所以:因大气压的总体作用为零,故上式中可令于是:左侧盖形心的坐标:故该处的压强:左侧盖所受油液的作用力:(取)右侧盖形心的坐标:故该处的压强:左侧盖所受油液的作用力:(取)陈书2-26盛有水的圆筒形容器以角速度绕垂直轴作等速旋转,设原静水深为h,容器半径为R,试求当超过多少时可露出筒底?
8、解:非惯性坐标系中相对静止流体满足欧拉方程:等速旋转时液体所受的质量力为:,将其代入欧拉方程,积分得:自由表面中心处r=0,(大气压),再令此处的z坐标为:(令筒底处z=0),代入上式,得:所以:所以:等压面的方程:对于自由表面:,故自由表面的方程为:当筒底刚好露出时,所以自由面方程为:自由面与筒壁相交处的垂向坐标:旋转后的水体体积:将水视为不可压缩流体,根据质量守恒,旋转前后的水体体积应相等,所以:所以:陈书2-39在由贮水池引出的直径D=0.5m的圆管中安装一蝶阀,h=10m,蝶阀是一个与管道直径相同的圆板,它能绕通过中心的水平轴回转。为不使该阀自行转动,问所需施加的力矩应为多大?解将阀门
9、的圆心定为坐标原点,z轴垂直向上,则压强分布为:由于静水压导致阀门所受的总力矩为:所以:陈书2-43图示一储水设备,在C点测得绝对压强为,h=2m,R=1m。求半球曲面AB所受到液体的作用力。解建立如图所示的坐标系,其中坐标原点取在球心,z轴垂直向上。以C为参考点,容器内任意点的压强可表达为:作用在曲面AB上任意点处的压强均与表面垂直,即压力的作用线通过球心。简单分析可知,曲面上水平方向的液体合压力为零,液体的曲面的总作用力仅体现在垂直方向,且合力方向向上,且合力作用线通过球心。球面的外法线方向:其中为纬度角,为经度角。曲面AB上的垂向总液体压力:其中:,所以:将和代入上式,得:将,h=2m,
10、R=1m,和代入,得:第三章陈书3-8 已知流体运动的速度场为,式中为常数。试求:时过点的流线方程。解:流线满足的微分方程为:将,代入上式,得:(x-y平面内的二维运动)移向得:两边同时积分:(其中t为参数)积分结果:(此即流线方程,其中C为积分常数)将t=1, x=0, y=b代入上式,得:积分常数t=1时刻,过(0,b)点的流线方程为:整理得:陈书3-10 已知二元不可压缩流体流动的流线方程如下,问哪一个是无旋的?(1);(2);(3),其中A,B,C均为常数。解法一(1)根据流线方程 当时,有令,根据流体的不可压缩性,从而再把流线方程对x求导得到所以y是任意的,得到无旋(2)根据流线方程
11、 令,根据流体的不可压缩性,从而再把流线方程对x求导得到所以当时,无旋当时,无旋(3)根据流线方程当时,令,再把流线方程对x求导得到根据流体的不可压缩性,从而,不恒为0有旋解法二(1)由题意知:流函数得到从而无旋(2)同上流函数,无旋(3)同上流函数,有旋 陈书3-11 设有两个流动,速度分量为:(1) ;(2) 式中为常数。试问:这两个流动中哪个是有旋的?哪个是无旋的?哪个有角变形?哪个无角变形?解:两个流动中均有,即均为平面二维流动状态,因此旋转角速度分量,角变形速度分量。(1) 当时此流动有旋,无角变形;当时此流动无旋,无角变形。(2) 当时此流动无旋,有角变形;当时此流动无旋,无角变形
12、。陈书3-13 设空间不可压缩流体的两个分速为:(3) ;(4) 其中均为常数。试求第三个分速度。已知当时。解:不可压缩流体的连续性方程为:,则:(1) 将上式积分得:利用条件时得到(2) 将上式积分得:利用条件时得到陈书3-30 如图所示水平放置水的分支管路,已知,。求,。解:根据质量守恒定理有:(1)其中将以及条件带入(1)式得到:,则,。第四章陈书48测量流速的皮托管如图所示,设被测流体的密度为,测压管内液体密度为,测压管内液面的高度差为h。假定所有流体为理想流体,皮托管直径很小。试证明所测流速证明沿管壁存在流线,因此可沿管壁列出理想流体的Bernoulli方程:(1)其中点1取在皮托管
13、头部(总压孔),而点2取在皮托管环向测压孔(静压孔)处。因流体在点1处滞止,故:又因皮托管直径很小,可以忽略其对流场的干扰,故点2处的流速为来流的速度,即:将以上条件代入Bernoulli方程(1),得:(2)再次利用皮托管直径很小的条件,得:从测压管的结果可知:将以上条件代入(2)式得:证毕。陈书413水流过图示管路,已知,。不计损失,求。解因不及损失,故可用理想流体的Bernoulli方程:(1)题中未给出流速沿管道断面的分布,再考虑到理想流体的条件,可认为流速沿管道断面不变。此外,对于一般的管道流动,可假定水是不可压缩的,于是根据质量守恒可得:(2)其中和分别为管道在1和2断面处的截面积
14、:,(3)方程(1)可改写为:(4)根据题意:,(5)将(5)代入(4),得:(6)再由(2)和(3)式可得:所以:(7)将(7)式代入(6)得:整理得:(8)将,代入(8)式,得:陈书419图示两小孔出流装置,试证明不计流动损失时有关系式。(此题陈书的标注有误)证明因不计损失,可视流体为理想流体,则位于深度处的小孔出流速度为:同样,位于深度处的小孔出流速度为:流出小孔后流体做平抛运动,位于深度处的小孔出流的下落时间为: 故其射的程为:同理,位于深度处的小孔出流的射程为:根据题意:所以:于是:第六章陈书48测量流速的皮托管如图所示,设被测流体的密度为,测压管内液体密度为,测压管内液面的高度差为
15、h。假定所有流体为理想流体,皮托管直径很小。试证明所测流速证明沿管壁存在流线,因此可沿管壁列出理想流体的Bernoulli方程:(1)其中点1取在皮托管头部(总压孔),而点2取在皮托管环向测压孔(静压孔)处。因流体在点1处滞止,故:又因皮托管直径很小,可以忽略其对流场的干扰,故点2处的流速为来流的速度,即:将以上条件代入Bernoulli方程(1),得:(2)再次利用皮托管直径很小的条件,得:从测压管的结果可知:将以上条件代入(2)式得:证毕。陈书413水流过图示管路,已知,。不计损失,求。解因不及损失,故可用理想流体的Bernoulli方程:(1)题中未给出流速沿管道断面的分布,再考虑到理想
16、流体的条件,可认为流速沿管道断面不变。此外,对于一般的管道流动,可假定水是不可压缩的,于是根据质量守恒可得:(2)其中和分别为管道在1和2断面处的截面积:,(3)方程(1)可改写为:(4)根据题意:,(5)将(5)代入(4),得:(6)再由(2)和(3)式可得:所以:(7)将(7)式代入(6)得:整理得:(8)将,代入(8)式,得:陈书419图示两小孔出流装置,试证明不计流动损失时有关系式。(此题陈书的标注有误)证明因不计损失,可视流体为理想流体,则位于深度处的小孔出流速度为:同样,位于深度处的小孔出流速度为:流出小孔后流体做平抛运动,位于深度处的小孔出流的下落时间为: 故其射的程为:同理,位
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 工程 流体力学 答案 陈卓如 讲课
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精***】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。