高中数学必修2第二章知识点总结演示教学.doc
《高中数学必修2第二章知识点总结演示教学.doc》由会员分享,可在线阅读,更多相关《高中数学必修2第二章知识点总结演示教学.doc(34页珍藏版)》请在咨信网上搜索。
高中数学必修2第二章知识点总结 精品文档 高中数学必修2知识点总结 立体几何初步 特殊几何体表面积公式(c为底面周长,h为高,为斜高,l为母线) 柱体、锥体、台体的体积公式 (4)球体的表面积和体积公式:V= ; S= 第二章 直线与平面的位置关系 2.1空间点、直线、平面之间的位置关系 1 平面含义:平面是无限延展的 2 三个公理: (1)公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内. 符号表示为 L A · α A∈L B∈L => L α A∈α B∈α 公理1作用:判断直线是否在平面内. C · B · A · α (2)公理2:过不在一条直线上的三点,有且只有一个平面。 符号表示为:A、B、C三点不共线 => 有且只有一个平面α, 使A∈α、B∈α、C∈α。 公理2作用:确定一个平面的依据。 P · α L β (3)公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。 符号表示为:P∈α∩β =>α∩β=L,且P∈L 公理3作用:判定两个平面是否相交的依据. 2.1.2 空间中直线与直线之间的位置关系 1 空间的两条直线有如下三种关系: 共面直线 相交直线:同一平面内,有且只有一个公共点; 平行直线:同一平面内,没有公共点; 异面直线: 不同在任何一个平面内,没有公共点。 2 公理4:平行于同一条直线的两条直线互相平行。 符号表示为:设a、b、c是三条直线 =>a∥c a∥b c∥b 强调:公理4实质上是说平行具有传递性,在平面、空间这个性质都适用。 公理4作用:判断空间两条直线平行的依据。 3 等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补. 4 注意点: ① a'与b'所成的角的大小只由a、b的相互位置来确定,与O的选择无关,为了简便,点O一般取在两直线中的一条上; ② 两条异面直线所成的角θ∈(0, ); ③ 当两条异面直线所成的角是直角时,我们就说这两条异面直线互相垂直,记作a⊥b; ④ 两条直线互相垂直,有共面垂直与异面垂直两种情形; ⑤ 计算中,通常把两条异面直线所成的角转化为两条相交直线所成的角。 2.1.3 — 2.1.4 空间中直线与平面、平面与平面之间的位置关系 1、直线与平面有三种位置关系: (1)直线在平面内 —— 有无数个公共点 (2)直线与平面相交 —— 有且只有一个公共点 (3)直线在平面平行 —— 没有公共点 指出:直线与平面相交或平行的情况统称为直线在平面外,可用a α来表示 a α a∩α=A a∥α 2.2.直线、平面平行的判定及其性质 2.2.1 直线与平面平行的判定 1、直线与平面平行的判定定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。 简记为:线线平行,则线面平行。 符号表示: a α b β => a∥α a∥b 2.2.2 平面与平面平行的判定 1、两个平面平行的判定定理:一个平面内的两条交直线与另一个平面平行,则这两个平面平行。 符号表示: a β b β a∩b = P β∥α a∥α b∥α 2、判断两平面平行的方法有三种: (1)用定义; (2)判定定理; (3)垂直于同一条直线的两个平面平行。 2.2.3 — 2.2.4直线与平面、平面与平面平行的性质 1、直线与平面平行的性质定理:一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行。 简记为:线面平行则线线平行。 符号表示: a ∥α a β a∥b α∩β= b 作用:利用该定理可解决直线间的平行问题。 2、两个平面平行的性质定理:如果两个平行的平面同时与第三个平面相交,那么它们的交线平行。 符号表示: α∥β α∩γ= a a∥b β∩γ= b 作用:可以由平面与平面平行得出直线与直线平行 2.3直线、平面垂直的判定及其性质 2.3.1直线与平面垂直的判定 1、定义:如果直线L与平面α内的任意一条直线都垂直,我们就说直线L与平面α互相垂直,记作L⊥α,直线L叫做平面α的垂线,平面α叫做直线L的垂面。如图,直线与平面垂直时,它们唯一公共点P叫做垂足。 P a L 2、直线与平面垂直的判定定理:一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直。 注意点: a)定理中的“两条相交直线”这一条件不可忽视; b)定理体现了“直线与平面垂直”与“直线与直线垂直”互相转化的数学思想。 2.3.2平面与平面垂直的判定 1、二面角的概念:表示从空间一直线出发的两个半平面所组成的图形 A 梭 l β B α 2、 二面角的记法:二面角α-l-β或α-AB-β 3、两个平面互相垂直的判定定理:一个平面过另一个平面的垂线,则这两个平面垂直。 2.3.3 — 2.3.4直线与平面、平面与平面垂直的性质 1、直线与平面垂直的性质定理:垂直于同一个平面的两条直线平行。 2、两个平面垂直的性质定理: 两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直。 第三章 直线与方程 (1)直线的倾斜角 定义:x轴正向与直线向上方向之间所成的角叫直线的倾斜角。特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度。因此,倾斜角的取值范围是0°≤α<180° (2)直线的斜率 ①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。直线的斜率常用k表示。即。斜率反映直线与轴的倾斜程度。 当直线l与x轴平行或重合时, α=0°, k = tan0°=0; 当直线l与x轴垂直时, α= 90°, k 不存在. 当时,; 当时,; 当时,不存在。 ②过两点的直线的斜率公式: ( P1(x1,y1),P2(x2,y2),x1≠x2) 注意下面四点:(1)当时,公式右边无意义,直线的斜率不存在,倾斜角为90°; (2)k与P1、P2的顺序无关; (3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得; (4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。 (3)直线方程 ①点斜式:直线斜率k,且过点 注意:当直线的斜率为0°时,k=0,直线的方程是y=y1。 当直线的斜率为90°时,直线的斜率不存在,它的方程不能用点斜式表示.但因l上每一点的横坐标都等于x1,所以它的方程是x=x1。 ②斜截式:,直线斜率为k,直线在y轴上的截距为b ③两点式:()直线两点, ④截矩式:其中直线与轴交于点,与轴交于点,即与轴、轴的截距分别为。 ⑤一般式:(A,B不全为0) 注意:各式的适用范围 特殊的方程如: 平行于x轴的直线:(b为常数); 平行于y轴的直线:(a为常数); (6)两直线平行与垂直 当,时, ; 注意:利用斜率判断直线的平行与垂直时,要注意斜率的存在与否。 (7)两条直线的交点 相交 交点坐标即方程组的一组解。 方程组无解 ; 方程组有无数解与重合 (8)两点间距离公式:设是平面直角坐标系中的两个点, 则 (9)点到直线距离公式:一点到直线的距离 (10)两平行直线距离公式 已知两条平行线直线和的一般式方程为:, :,则与的距离为 第四章 圆与方程 1、圆的定义:平面内到一定点的距离等于定长的点的集合叫圆,定点为圆心,定长为圆的半径。 2、圆的方程 (1)标准方程,圆心,半径为r; 点与圆的位置关系: 当>,点在圆外 当=,点在圆上 当<,点在圆内 (2)一般方程 当时,方程表示圆,此时圆心为,半径为 当时,表示一个点; 当时,方程不表示任何图形。 (3)求圆方程的方法: 一般都采用待定系数法:先设后求。确定一个圆需要三个独立条件,若利用圆的标准方程, 需求出a,b,r;若利用一般方程,需要求出D,E,F; 另外要注意多利用圆的几何性质:如弦的中垂线必经过原点,以此来确定圆心的位置。 3、直线与圆的位置关系: 直线与圆的位置关系有相离,相切,相交三种情况: (1)设直线,圆,圆心到l的距离为 ,则有;; (2)过圆外一点的切线:①k不存在,验证是否成立②k存在,设点斜式方程,用圆心到该直线距离=半径,求解k,得到方程【一定两解】 (3)过圆上一点的切线方程:圆(x-a)2+(y-b)2=r2,圆上一点为(x0,y0),则过此点的切线方程为(x0-a)(x-a)+(y0-b)(y-b)= r2 4、圆与圆的位置关系:通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定。 设圆, 两圆的位置关系常通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定。 当时两圆外离,此时有公切线四条; 当时两圆外切,连心线过切点,有外公切线两条,内公切线一条; 当时两圆相交,连心线垂直平分公共弦,有两条外公切线; 当时,两圆内切,连心线经过切点,只有一条公切线; 当时,两圆内含; 当时,为同心圆。 注意:已知圆上两点,圆心必在中垂线上;已知两圆相切,两圆心与切点共线 圆的辅助线一般为连圆心与切线或者连圆心与弦中点 第一章 空间几何体题 一、选择题 1.有一个几何体的三视图如下图所示,这个几何体可能是一个( ). 主视图 左视图 俯视图 (第1题) A.棱台 B.棱锥 C.棱柱 D.正八面体 2.如果一个水平放置的平面图形的斜二测直观图是一个底角为45°,腰和上底均为的等腰梯形,那么原平面图形的面积是( ). A.2+ B. C. D. 3.棱长都是的三棱锥的表面积为( ). A. B.2 C.3 D.4 4.长方体的一个顶点上三条棱长分别是3,4,5,且它的8个顶点都在同一球面上,则这个球的表面积是( ). A.25π B.50π C.125π D.都不对 5.正方体的棱长和外接球的半径之比为( ). A.∶1 B.∶2 C.2∶ D.∶3 6.在△ABC中,AB=2,BC=1.5,∠ABC=120°,若使△ABC绕直线旋转一周,则所形成的几何体的体积是( ). A.π B.π C.π D.π 7.若底面是菱形的棱柱其侧棱垂直于底面,且侧棱长为5,它的对角线的长分别是9和15,则这个棱柱的侧面积是( ). A.130 B.140 C.150 D.160 8.如图,在多面体ABCDEF中,已知平面ABCD是边长为3的正方形,EF∥AB,EF=,且EF与平面ABCD的距离为2,则该多面体的体积为( ). (第8题) A. B.5 C.6 D. 9.下列关于用斜二测画法画直观图的说法中,错误的是( ). A.用斜二测画法画出的直观图是在平行投影下画出的空间图形 B.几何体的直观图的长、宽、高与其几何体的长、宽、高的比例相同 C.水平放置的矩形的直观图是平行四边形 D.水平放置的圆的直观图是椭圆 10.如图是一个物体的三视图,则此物体的直观图是( ). (第10题) 二、填空题 11.一个棱柱至少有______个面,面数最少的一个棱锥有________个顶点,顶点最少的一个棱台有________条侧棱. 12.若三个球的表面积之比是1∶2∶3,则它们的体积之比是_____________. 13.正方体ABCD-A1B1C1D1 中,O是上底面ABCD的中心,若正方体的棱长为a,则三棱锥O-AB1D1的体积为_____________. 14.如图,E,F分别为正方体的面ADD1A1、面BCC1B1的中心,则四边形BFD1E在该正方体的面上的射影可能是___________. (第14题) 15.已知一个长方体共一顶点的三个面的面积分别是、、,则这个长方体的对角线长是___________,它的体积为___________. 16.一个直径为32厘米的圆柱形水桶中放入一个铁球,球全部没入水中后,水面升高9厘米则此球的半径为_________厘米. 三、解答题 17.有一个正四棱台形状的油槽,可以装油190 L,假如它的两底面边长分别等于60 cm和40 cm,求它的深度. 18 *.已知半球内有一个内接正方体,求这个半球的体积与正方体的体积之比.[提示:过正方体的对角面作截面] 19.如图,在四边形ABCD中,∠DAB=90°,∠ADC=135°,AB=5,CD=2,AD=2,求四边形ABCD绕AD旋转一周所成几何体的表面积及体积. (第19题) 20.养路处建造圆锥形仓库用于贮藏食盐(供融化高速公路上的积雪之用),已建的仓库的底面直径为12 m,高4 m,养路处拟建一个更大的圆锥形仓库,以存放更多食盐,现有两种方案:一是新建的仓库的底面直径比原来大4 m(高不变);二是高度增加4 m(底面直径不变). (1)分别计算按这两种方案所建的仓库的体积; (2)分别计算按这两种方案所建的仓库的表面积; (3)哪个方案更经济些? 第二章 点、直线、平面之间的位置关系A组 一、选择题 1.设 a,b为两个不同的平面,l,m为两条不同的直线,且la,m,有如下的两个命题:①若 a∥b,则l∥m;②若l⊥m,则 a⊥b.那么( ). A.①是真命题,②是假命题 B.①是假命题,②是真命题 C.①②都是真命题 D.①②都是假命题 2.如图,ABCD-A1B1C1D1为正方体,下面结论错误的是( ). (第2题) A.BD∥平面CB1D1 B.AC1⊥BD C.AC1⊥平面CB1D1 D.异面直线AD与CB1角为60° 3.关于直线m,n与平面 a,b,有下列四个命题: ①m∥a,n∥b 且 a∥b,则m∥n; ②m⊥a,n⊥b 且 a⊥b,则m⊥n; ③m⊥a,n∥b 且 a∥b,则m⊥n; ④m∥a,n⊥b 且 a⊥b,则m∥n. 其中真命题的序号是( ). A.①② B.③④ C.①④ D.②③ 4.给出下列四个命题: ①垂直于同一直线的两条直线互相平行 ②垂直于同一平面的两个平面互相平行 ③若直线l1,l2与同一平面所成的角相等,则l1,l2互相平行 ④若直线l1,l2是异面直线,则与l1,l2都相交的两条直线是异面直线 其中假命题的个数是( ).A.1 B.2 C.3 D.4 5.下列命题中正确的个数是( ). ①若直线l上有无数个点不在平面 a 内,则l∥a ②若直线l与平面 a 平行,则l与平面 a 内的任意一条直线都平行 ③如果两条平行直线中的一条直线与一个平面平行,那么另一条直线也与这个平面平行 ④若直线l与平面 a 平行,则l与平面 a 内的任意一条直线都没有公共点 A.0个 B.1个 C.2个 D.3个 6. 两直线l1与l2异面,过l1作平面与l2平行,这样的平面( ). A.不存在 B.有唯一的一个 C.有无数个 D.只有两个 7.把正方形ABCD沿对角线AC折起,当以A,B,C,D四点为顶点的三棱锥体积最大时,直线BD和平面ABC所成的角的大小为( ). A.90° B.60° C.45° D.30° 8.下列说法中不正确的是( ). A.空间中,一组对边平行且相等的四边形一定是平行四边形 B.同一平面的两条垂线一定共面 C.过直线上一点可以作无数条直线与这条直线垂直,且这些直线都在同一个平面内 D.过一条直线有且只有一个平面与已知平面垂直 9.给出以下四个命题: ①如果一条直线和一个平面平行,经过这条直线的一个平面和这个平面相交,那么这条直线和交线平行 ②如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面 ③如果两条直线都平行于一个平面,那么这两条直线互相平行 ④如果一个平面经过另一个平面的一条垂线,那么些两个平面互相垂直 其中真命题的个数是( ). A.4 B.3 C.2 D.1 10.异面直线a,b所成的角60°,直线a⊥c,则直线b与c所成的角的范围为( ). A.[30°,90°] B.[60°,90°] C.[30°,60°] D.[30°,120°] 二、填空题 11.已知三棱锥P-ABC的三条侧棱PA,PB,PC两两相互垂直,且三个侧面的面积分别为S1,S2,S3,则这个三棱锥的体积为 . 12.P是△ABC 所在平面 a 外一点,过P作PO⊥平面 a,垂足是O,连PA,PB,PC. (1)若PA=PB=PC,则O为△ABC 的 心; (2)PA⊥PB,PA⊥PC,PC⊥PB,则O是△ABC 的 心; (3)若点P到三边AB,BC,CA的距离相等,则O是△ABC 的 心; (4)若PA=PB=PC,∠C=90º,则O是AB边的 点; J (第13题) (5)若PA=PB=PC,AB=AC,则点O在△ABC的 线上. 13.如图,在正三角形ABC中,D,E,F分别为各边的中点,G,H,I,J分别为AF,AD,BE,DE的中点,将△ABC沿DE,EF,DF折成三棱锥以后,GH与IJ所成角的度数为 . 14.直线l与平面 a 所成角为30°,l∩a=A,直线m∈a,则m与l所成角的取值范围是 . 15.棱长为1的正四面体内有一点P,由点P向各面引垂线,垂线段长度分别为d1,d2,d3,d4,则d1+d2+d3+d4的值为 . 16.直二面角 a-l-b 的棱上有一点A,在平面 a,b 内各有一条射线AB,AC与l成45°,ABa,ACb,则∠BAC= . 三、解答题 17.在四面体ABCD中,△ABC与△DBC都是边长为4的正三角形. (1)求证:BC⊥AD; (第17题) (2)若点D到平面ABC的距离等于3,求二面角A-BC-D的正弦值; (3)设二面角A-BC-D的大小为 q,猜想 q 为何值时,四面体A-BCD的体积最大.(不要求证明) 18. 如图,在长方体ABCD—A1B1C1D1中,AB=2,BB1=BC=1,E为D1C1的中点,连结ED,EC,EB和DB. (1)求证:平面EDB⊥平面EBC; (2)求二面角E-DB-C的正切值. (第18题) 19*.如图,在底面是直角梯形的四棱锥S-ABCD中,AD∥BC,∠ABC=90°, SA⊥面ABCD,SA=AB=BC=1,AD=. (1)求四棱锥S—ABCD的体积; (2)求面SCD与面SBA所成的二面角的正切值. (提示:延长 BA,CD 相交于点 E,则直线 SE 是 所求二面角的棱.) 20*.斜三棱柱的一个侧面的面积为10,这个侧面与它所对棱的距离等于6,求这个棱柱的体积.(提示:在 AA1 上取一点 P,过 P 作棱柱的截面,使 AA1 垂直于这个截面.) (第20题) 第三章 直线与方程 A组 一、选择题 1.若直线x=1的倾斜角为 a,则 a( ). A.等于0 B.等于p C.等于 D.不存在 2.图中的直线l1,l2,l3的斜率分别为k1,k2,k3,则( ). A.k1<k2<k3 B.k3<k1<k2 C.k3<k2<k1 D.k1<k3<k2 (第2题) 3.已知直线l1经过两点(-1,-2)、(-1,4),直线l2经过两点(2,1)、(x,6),且l1∥l2,则x=( ). A.2 B.-2 C.4 D.1 4.已知直线l与过点M(-,),N(,-)的直线垂直,则直线l的倾斜角是( ). A. B. C. D. 5.如果AC<0,且BC<0,那么直线Ax+By+C=0不通过( ). A.第一象限 B.第二象限 C.第三象限 D.第四象限 6.设A,B是x轴上的两点,点P的横坐标为2,且|PA|=|PB|,若直线PA的方程为x-y+1=0,则直线PB的方程是( ). A.x+y-5=0 B.2x-y-1=0 C.2y-x-4=0 D.2x+y-7=0 7.过两直线l1:x-3y+4=0和l2:2x+y+5=0的交点和原点的直线方程为( ). A.19x-9y=0 B.9x+19y=0 C.19x-3y= 0 D.3x+19y=0 8.直线l1:x+a2y+6=0和直线l2 : (a-2)x+3ay+2a=0没有公共点,则a的值是( ). A.3 B.-3 C.1 D.-1 9.将直线l沿y轴的负方向平移a(a>0)个单位,再沿x轴正方向平移a+1个单位得直线l',此时直线l' 与l重合,则直线l' 的斜率为( ). A. B. C. D. 10.点(4,0)关于直线5x+4y+21=0的对称点是( ). A.(-6,8) B.(-8,-6) C.(6,8) D.(-6,-8) 二、填空题 11.已知直线l1的倾斜角 a1=15°,直线l1与l2的交点为A,把直线l2绕着点A按逆时针方向旋转到和直线l1重合时所转的最小正角为60°,则直线l2的斜率k2的值为 . 12.若三点A(-2,3),B(3,-2),C(,m)共线,则m的值为 . 13.已知长方形ABCD的三个顶点的坐标分别为A(0,1),B(1,0),C(3,2),求第四个顶点D的坐标为 . 14.求直线3x+ay=1的斜率 . 15.已知点A(-2,1),B(1,-2),直线y=2上一点P,使|AP|=|BP|,则P点坐标为 . 16.与直线2x+3y+5=0平行,且在两坐标轴上截距的和为6的直线方程是 . 17.若一束光线沿着直线x-2y+5=0射到x轴上一点,经x轴反射后其反射线所在直线的方程是 . 三、解答题 18.设直线l的方程为(m2-2m-3)x+(2m2+m-1)y=2m-6(m∈R,m≠-1),根据下列条件分别求m的值: ①l在x轴上的截距是-3; ②斜率为1. 19.已知△ABC的三顶点是A(-1,-1),B(3,1),C(1,6).直线l平行于AB,交AC,BC分别于E,F,△CEF的面积是△CAB面积的.求直线l的方程. 20.一直线被两直线l1:4x+y+6=0,l2:3x-5y-6=0截得的线段的中点恰好是坐标原点,求该直线方程. . 21.直线l过点(1,2)和第一、二、四象限,若直线l的横截距与纵截距之和为6,求直线l的方程. 第四章 圆与方程 一、选择题 1.若圆C的圆心坐标为(2,-3),且圆C经过点M(5,-7),则圆C的半径为( ). A. B.5 C.25 D. 2.过点A(1,-1),B(-1,1)且圆心在直线x+y-2=0上的圆的方程是( ). A.(x-3)2+(y+1)2=4 B.(x+3)2+(y-1)2=4 C.(x-1)2+(y-1)2=4 D.(x+1)2+(y+1)2=4 3.以点(-3,4)为圆心,且与x轴相切的圆的方程是( ). A.(x-3)2+(y+4)2=16 B.(x+3)2+(y-4)2=16 C.(x-3)2+(y+4)2=9 D.(x+3)2+(y-4)2=19 4.若直线x+y+m=0与圆x2+y2=m相切,则m为( ). A.0或2 B.2 C. D.无解 5.圆(x-1)2+(y+2)2=20在x轴上截得的弦长是( ). A.8 B.6 C.6 D.4 6.两个圆C1:x2+y2+2x+2y-2=0与C2:x2+y2-4x-2y+1=0的位置关系为( ). A.内切 B.相交 C.外切 D.相离 7.圆x2+y2-2x-5=0与圆x2+y2+2x-4y-4=0的交点为A,B,则线段AB的垂直平分线的方程是( ). A.x+y-1=0 B.2x-y+1=0 C.x-2y+1=0 D.x-y+1=0 8.圆x2+y2-2x=0和圆x2+y2+4y=0的公切线有且仅有( ). A.4条 B.3条 C.2条 D.1条 9.在空间直角坐标系中,已知点M(a,b,c),有下列叙述: 点M关于x轴对称点的坐标是M1(a,-b,c); 点M关于yoz平面对称的点的坐标是M2(a,-b,-c); 点M关于y轴对称的点的坐标是M3(a,-b,c); 点M关于原点对称的点的坐标是M4(-a,-b,-c). 其中正确的叙述的个数是( ). A.3 B.2 C.1 D.0 10.空间直角坐标系中,点A(-3,4,0)与点B(2,-1,6)的距离是( ). A.2 B.2 C.9 D. 二、填空题 11.圆x2+y2-2x-2y+1=0上的动点Q到直线3x+4y+8=0距离的最小值为 . 12.圆心在直线y=x上且与x轴相切于点(1,0)的圆的方程为 . 13.以点C(-2,3)为圆心且与y轴相切的圆的方程是 . 14.两圆x2+y2=1和(x+4)2+(y-a)2=25相切,试确定常数a的值 . 15.圆心为C(3,-5),并且与直线x-7y+2=0相切的圆的方程为 . 16.设圆x2+y2-4x-5=0的弦AB的中点为P(3,1),则直线AB的方程是 . 三、解答题 17.求圆心在原点,且圆周被直线3x+4y+15=0分成1∶2两部分的圆的方程. 18.求过原点,在x轴,y轴上截距分别为a,b的圆的方程(ab≠0). 19.求经过A(4,2),B(-1,3)两点,且在两坐标轴上的四个截距之和是2的圆的方程. 20.求经过点(8,3),并且和直线x=6与x=10都相切的圆的方程. 期末测试题 考试时间:90分钟 试卷满分:100分 一、选择题:本大题共14小题,每小题4分,共56分.在每小题给出的四个选项中,只有一项是符合要求的. 1.在直角坐标系中,已知A(-1,2),B(3,0),那么线段AB中点的坐标为( ). A.(2,2) B.(1,1) C.(-2,-2) D.(-1,-1) 正视图 侧视图 俯视图 (第2题) 2.右面三视图所表示的几何体是( ). A.三棱锥 B.四棱锥 C.五棱锥 D.六棱锥 3.如果直线x+2y-1=0和y=kx互相平行,则实数k的值为( ). A.2 B. C.-2 D.- 4.一个球的体积和表面积在数值上相等,则该球半径的数值为( ). A.1 B.2 C.3 D.4 5.下面图形中是正方体展开图的是( ). A B C D (第5题) 6.圆x2+y2-2x-4y-4=0的圆心坐标是( ). A.(-2,4) B.(2,-4) C.(-1,2) D.(1,2) 7.直线y=2x+1关于y轴对称的直线方程为( ). A.y=-2x+1 B.y=2x-1 C.y=-2x-1 D.y=-x-1 8.已知两条相交直线a,b,a∥平面 a,则b与 a 的位置关系是( ). A.b平面a B.b⊥平面a C.b∥平面a D.b与平面a相交,或b∥平面a 9.在空间中,a,b是不重合的直线,a,b是不重合的平面,则下列条件中可推出a∥b的是( ). A.aa,bb,a∥b B.a∥a,bb C.a⊥a,b⊥a D.a⊥a,ba 10. 圆x2+y2=1和圆x2+y2-6y+5=0的位置关系是( ). A.外切 B.内切 C.外离 D.内含 (第11题) 11.如图,正方体ABCD—A'B'C'D'中,直线D'A与DB所成的角可以表示为( ). A.∠D'DB B.∠AD' C' C.∠ADB D.∠DBC' 12. 圆(x-1)2+(y-1)2=2被轴截得的弦长等于( ). A. 1 B. C. 2 D. 3 A1 B1 C1 A B E C (第13题) 13.如图,三棱柱A1B1C1—ABC中,侧棱AA1⊥底面A1B1C1,底面三角形A1B1C1是正三角形,E是BC中点,则下列叙述正确的是( ). A.CC1与B1E是异面直线 B.AC⊥平面A1B1BA C.AE,B1C1为异面直线,且AE⊥B1C1 D.A1C1∥平面AB1E 14.有一种圆柱体形状的笔筒,底面半径为4 cm,高为12 cm.现要为100个这种相同规格的笔筒涂色(笔筒内外均要涂色,笔筒厚度忽略不计). 如果每0.5 kg涂料可以涂1 m2,那么为这批笔筒涂色约需涂料. A.1.23 kg B.1.76 kg C.2.46 kg D.3.52 kg 二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上. 15.坐标原点到直线4x+3y-12=0的距离为 . A B C D D1 C1 B1 A1 (第17题) 16.以点A(2,0)为圆心,且经过点B(-1,1)的圆的方程是 . 17.如图,在长方体ABCD—A1B1C1D1中,棱锥A1——ABCD的体积与长方体的体积之比为_______________. 18.在平面几何中,有如下结论:三边相等的三角形内任意一点到三边的距离之和为定值.拓展到空间,类比平面几何的上述结论,可得:四个面均为等边三角形的四面体内任意一点_______________________________________. 三、解答题:本大题共3小题,共28分.解答应写出文字说明,证明过程或演算步骤. 19.已知直线l经过点(0,-2),其倾斜角是60°. (1)求直线l的方程; (2)求直线l与两坐标轴围成三角形的面积. A C P B D E (第20题) 20.如图,在三棱锥P—ABC中,PC⊥底面ABC, AB⊥BC,D,E分别是AB,PB的中点. (1)求证:DE∥平面PAC; (2)求证:AB⊥PB; (3)若PC=BC,求二面角P—AB—C的大小. 21.已知半径为5的圆C的圆心在x轴上,圆心的横坐标是整数,且与直线4x+3y-29=0相切. (1)求圆C的方程; (2)设直线ax-y+5=0与圆C相交于A,B两点,求实数a的取值范围; (3) 在(2)的条件下,是否存在实数a,使得过点P(-2,4)的直线l垂直平分弦AB?若存在,求出实数a的值;若不存在,请说明理由. 期末测试题 参考答案 一、选择题 1.B 2.D 3.D 4.C 5.A 6.D 7.A 8.D 9.C 10.A 11.D 12.C 13.C 14.D 二、填空题 15.. 16.(x-2)2+y2=10. 17.1:3. 18.到四个面的距离之和为定值. 三、解答题 19.解:(1)因为直线l的倾斜角的大小为60°,故其斜率为tan 60°=,又直线l经过点(0,-2),所以其方程为x-y-2=0. (2)由直线l的方程知它在x轴、y轴上的截距分别是,-2,所以直线l与两坐标轴围成三角形的面积S=··2=. A C P B D E (第20题) 20.(1)证明:因为D,E分别是AB,PB的中点, 所以DE∥PA. 因为PA平面PAC,且DE平面PAC, 所以DE∥平面PAC. (2)因为PC⊥平面ABC,且AB平面ABC, 所以AB⊥PC.又因为AB⊥BC,且PC∩BC=C. 所以AB⊥平面PBC. 又因为PB平面PBC, 所以AB⊥PB. (3)由(2)知,PB⊥AB,BC⊥AB, 所以,∠PBC为二面角P—AB—C的平面角. 因为PC=BC,∠PCB=90°, 所以∠PBC=45°, 所以二面角P—AB—C的大小为45°. 21.解:(1)设圆心为M(m,0)(m∈Z). 由于圆与直线4x+3y-29=0相切,且半径为5,所以,=5, 即|4m-29|=25. 因为m为整数,故m=1. 故所求的圆的方程是(x-1)2+y2=25. (2)直线ax-y+5=0即y=ax+5.代入圆的方程,消去y整理,得 (a2+1)x2+2(5a-1)x+1=0. 由于直线ax-y+- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高中数学 必修 第二 知识点 总结 演示 教学
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精***】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精***】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文