高中数学选修2-3计数原理测试题(含答案)讲课教案.doc
《高中数学选修2-3计数原理测试题(含答案)讲课教案.doc》由会员分享,可在线阅读,更多相关《高中数学选修2-3计数原理测试题(含答案)讲课教案.doc(8页珍藏版)》请在咨信网上搜索。
高中数学选修2-3计数原理测试题(含答案) 精品文档 高中数学选修2-3计数原理测试题 试室____________________班级____________________姓名_________________________座号__________________ ……………………………..装……………………………. 订…………………………….线…. ……………………………. (本试卷分第Ⅰ卷和第Ⅱ卷两部分,共150分) 第Ⅰ卷(选择题,共50分) 一、选择题(本大题共10个小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的) 选择题 1 2 3 4 5 6 7 8 9 10 1.若为正整数,则乘积 ( ) A. B. C. D. 2.若直线的系数同时从0,1,2,3,5,7六个数字中取不同的值,则这些方程表示不同的直线条数 ( ) A. 22 B. 30 C. 12 D. 15 3.四个编号为1,2,3,4的球放入三个不同的盒子里,每个盒子只能放一个球,编号为1的球必须放入,则不同的方法有 ( ) A.12种 B.18种 C.24种 D.96种 4.用0,1,2,3,4组成没有重复数字的全部五位数中,若按从小到大的顺序排列,则数字12340应是第几个数 ( ) A.6 B.9 C.10 D.8 5.把一个圆周24等分,过其中任意三个分点可以连成圆的内接三角形,其中直角三角形的个数是 ( ) A.2024 B.264 C.132 D.122 6. 在(a-b)99的展开式中,系数最小的项为( ) A.T49 B.T50 C.T51 D.T52 7. 数11100-1的末尾连续为零的个数是( ) A.0 B.3 C.5 D.7 8. 若,则的值为 ( ) A.4 B.7 C.4或7 D.不存在 9.以正方体的顶点为顶点,能作出的三棱锥的个数是 ( ) A. B. C.-6 D. 10.从长度分别为1,2,3,4,5的五条线段中,任取三条的不同取法共有n种.在这些取法中,以取出的三条线段为边可组成的钝角三角形的个数为m,则等于( ) A. B. C. D. 第Ⅱ卷(非选择题,共100分) 二、填空题(本大题共5小题,每小题5分,共25分) 11.设含有8个元素的集合的全部子集数为S,其中由3个元素组成的子集数为T, 则的值为___________. 12.有4个不同的小球,全部放入4个不同的盒子内,恰好有两个盒子不放球的不同放法的总数为 . 13.在(x-1)11的展开式中,x的偶次幂的所有项的系数的和为 . 14. 六位身高全不相同的同学在“一滩”拍照留念,老师要求他们前后两排各三人,则后排每个人的身高均比前排同学高的概率是 . 15. 用四个不同数字组成四位数,所有这些四位数中的数字的总和为,则 . 三、解答题(共计75分) 16.(12分)平面上有9个点,其中4个点在同一条直线上,此外任三点不共线. (1)过每两点连线,可得几条直线? (2)以每三点为顶点作三角形可作几个? (3)以一点为端点作过另一点的射线,这样的射线可作出几条? (4)分别以其中两点为起点和终点,最多可作出几个向量? 17.(12分)在二次项 (a>0,b>0,m,n≠0)中有2m+n=0,如果它的展开式中系数最大的项恰是常数项,求它是第几项? 18.(12分)由1,2,3,4,5,6,7的七个数字,试问: (1)能组成多少个没有重复数字的七位数? (2)上述七位数中三个偶数排在一起的有几个? (3)(1)中的七位数中,偶数排在一起、奇数也排在一起的有几个? (4)(1)中任意两偶然都不相邻的七位数有几个? 19.(12分)2006年6月9日世界杯足球赛将在德国举行,参赛球队共32支,(1)先平均分成8个小组,在每组内进行单循环赛(即每队之间轮流比赛一次),决出16强(即取各组前2名)。(2)之后,按确定程序进行淘汰赛(即每两队赛一场,输者被淘汰),由16强决出8强;再由8强决出4强;最后在4强中决出冠军、亚军、季军、第四名,共赛多少场呢? 20.(14)6本不同的书,按照以下要求处理,各有几种分法? (1)一堆一本,一堆两本,一堆三本; (2)甲得一本,乙得二本,丙得三本; (2)一人得一本,一人得二本,一人得三本; (3)平均分给甲、乙、丙三人; (4)平均分成三堆. 21.(13分)某班有男、女学生各n人,现在按照男生至少一人,女生至多n人选法,将选出的学生编成社会实践小组,试证明:这样的小组的选法共有种. 高中数学选修2-3计数原理测试题参考答案 一.选择题(本大题共10小题,每小题5分,共50分) 题号 1 2 3 4 5 6 7 8 9 10 答案 D A B C B B B C D B 二.填空题(本大题共4小题,每小题6分,共24分) 11.32 ( S: ,T:,) 12.84 () 13. - 14. (将最高的3人放在后排,其余3人放在前排,有;则) 15. 2 三、解答题(本大题共6题,共76分) 16.(12分)解:(1);(解法2 :=31) (2)( 解法2:=80) (3)不共线的五点可连得条射线,共线的四点中,外侧两点各可得到1条射线,内部两点各可得到2条射线;而在不共线的五点中取一点,共线的四点中取一点而形成的射线有条. 故共有:条射线. (4)任意两点之间,可有方向相反的2个 向量各不相等,则可得到个向量. 17.(12分) 解:(1)Tr+1=C12ra12-rx12m-mrbrxnr=C12ra12-rbrx12m-mr+nr. 令 ∴r=4 系数最大项为第5项 18.(12分) 解:(l)把7个数字进行全排列,可有种情况,所以符合题意有个. (2)上述七位数中,三个偶数排在一起的有个. (3)上述七位数中,3个偶数排在一起,4个奇数也排在一起的有 个. (4)上述七位数中,偶数都不相邻,可先把4个奇数排好,再将3个偶数分别插入5个空档,共有个. 19.(14分) 32支球队分成8组,每组4支球队,进行单循环赛,每组取前二名,一共应进行8×=48,16强队按程序进行淘汰赛决出前八名,应进行8场比赛,再决出4强,应进行4场比赛,决出冠军、亚军、三、四名,应进行4场比赛,故总计:48+8+4+4=64场比赛 20.(1)先在6本书中任取一本.作为一本一堆,有种取法,再从余下的五本书中任取两本,作为两本一堆,有种取法,再后从余下三本取三本作为一堆,有 种取法,故共有分法=60种. (2)由(1)知.分成三堆的方法有种,而每种分组方法仅对应一种分配方法,故甲得一本,乙得二本,丙得三本的分法亦为=60 种. (3)由(1)知,分成三堆的方法有种,但每一种分组方法又有 不同的分配方案,故一人得一本,一人得两本,一人得三本的分法有=360(种). (4)3个人一个一个地来取书,甲从6本不同的书本中任取出2本的方法有种,甲不论用哪一种方法取得2本书后,已再从余下的4本书中取书有种方法,而甲、乙不论用哪一种方法各取2本书后,丙从余下的两本中取两本书,有种方法,所以一共有=90种方法. (5)把6本不同的书分成三堆,每推二本与把六本不同的书分给甲、乙、丙三人,每人二本的区别在于,后者相当于把六本不同的书,平均分成三难后,再把每次分得的三堆书分给甲、乙、丙三个人.因此,设把六本不同的书,平均分成三堆的方法有种,那么把六本不同的书分给甲、乙、丙三人每人2本的分法就应种,由(4)知,把六本不同的书分给甲、乙、丙三人,每人2本的方法有 种. 所以 ,则 (种) 21. 证:依题意,这些小组中女生人数分别是Cn0,Cn1,Cn2,…,Cnn个.对于上述女生人数的每种情况,男生人数可以有Cn1,Cn2,…,Cnn个,根据乘法原理和加法原理可得Cn0Cn1+Cn0Cn2+…+Cn0Cnn+Cn1Cn1+…+Cn1Cn2+Cn2Cn1+Cn2Cn2+…+Cn2Cnn+…CnnCn1+CnnCn2+…+CnnCnn=Cn0(Cn1+Cn2+…+Cnn)+Cn1(Cn1+Cn2+…+Cnn)+Cn2(Cn1+Cn2+…+Cnn)+…+Cnn(Cn1+Cn2+…+Cnn)=(Cn1+Cn2+…+Cnn)(Cn0+Cn1+Cn2+…+Cnn)=(2n-1)2n ∴ 依题意所编成的小组共有2n(2n-1)个. 收集于网络,如有侵权请联系管理员删除- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高中数学 选修 计数 原理 测试 答案 讲课 教案
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【快乐****生活】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【快乐****生活】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【快乐****生活】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【快乐****生活】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文