高中数学选修4-4极坐标与参数方程练习题知识讲解.doc
《高中数学选修4-4极坐标与参数方程练习题知识讲解.doc》由会员分享,可在线阅读,更多相关《高中数学选修4-4极坐标与参数方程练习题知识讲解.doc(25页珍藏版)》请在咨信网上搜索。
高中数学选修4-4极坐标与参数方程练习题 精品文档 极坐标与参数方程单元练习1 一、选择题(每小题5分,共25分) 1、已知点M的极坐标为,下列所给出的四个坐标中能表示点M的坐标是( )。 A. B. C. D. 2、直线:3x-4y-9=0与圆:,(θ为参数)的位置关系是( ) A.相切 B.相离 C.直线过圆心 D.相交但直线不过圆心 3、在参数方程(t为参数)所表示的曲线上有B、C两点,它们对应的参数值分别为t1、t2,则线段BC的中点M对应的参数值是( ) 4、曲线的参数方程为(t是参数),则曲线是( ) A、线段 B、双曲线的一支 C、圆 D、射线 5、实数x、y满足3x2+2y2=6x,则x2+y2的最大值为( ) A、 B、4 C、 D、5 二、填空题(每小题5分,共30分) 1、点的极坐标为 。 2、若A,B,则|AB|=___________,___________。(其中O是极点) 3、极点到直线的距离是________ _____。 4、极坐标方程表示的曲线是_______ _____。 5、圆锥曲线的准线方程是 。 6、直线过点,倾斜角是,且与直线交于,则的长为 。 三、解答题(第1题14分,第2题16分,第3题15分;共45分) 1、求圆心为C,半径为3的圆的极坐标方程。 2、已知直线l经过点P(1,1),倾斜角, (1)写出直线l的参数方程。 (2)设l与圆相交与两点A、B,求点P到A、B两点的距离之积。 3、求椭圆。 极坐标与参数方程单元练习1参考答案 【试题答案】一、选择题:1、D 2、D 3、B 4、D 5、B 二、填空题:1、或写成。 2、5,6。 3、。 4、 5、。6、。 三、解答题 1、1、如下图,设圆上任一点为P(),则 而点O A符合 2、解:(1)直线的参数方程是 (2)因为点A,B都在直线l上,所以可设它们对应的参数为t1和t2,则点A,B的坐标分别为 以直线L的参数方程代入圆的方程整理得到 ① 因为t1和t2是方程①的解,从而t1t2=-2。所以|PA|·|PB|= |t1t2|=|-2|=2。 3、(先设出点P的坐标,建立有关距离的函数关系) 极坐标与参数方程单元练习2 1.已知点P的极坐标是(1,),则过点P且垂直极轴的直线极坐标方程是 . 2.在极坐标系中,曲线一条对称轴的极坐标方程 . 3.在极坐标中,若过点(3,0)且与极轴垂直的直线交曲线于A、B两点.则|AB|= . 4.已知三点A(5,),B(-8,),C(3,),则ΔABC形状为 . 5.已知某圆的极坐标方程为:ρ2 –4ρcon(θ-π/4)+6=0 则:①圆的普通方程 ; ②参数方程 ; ③圆上所有点(x,y)中xy的最大值和最小值分别为 、 . 6.设椭圆的参数方程为,,是椭圆上两点, M、N对应的参数为且,则大小关系是 . 7.直线:3x-4y-9=0与圆:,(θ为参数)的位置关系是 . 8.经过点M0(1,5)且倾斜角为的直线,以定点M0到动 点P的位移t为参数的参数方程 是 . 且与直线交于,则的长为 . 9.参数方程 (t为参数)所表示的图形是 . 10.方程(t是参数)的普通方程是 .与x轴交点的直角坐标是 11.画出参数方程(为参数)所表示的曲线 . 12.已知动园:, 则圆心的轨迹是 . 13.已知过曲线上一点P,原点为O,直线PO的倾斜角 为,则P点坐标是 . 14.直线 (t为参数)上对应t=0, t=1两点间的距离是 . 15.直线(t为参数)的倾斜角是 . 16.设,那么直线与圆的 位置关系是 . 17.直线上与点距离等于的点的坐标是 . 18.过抛物线y2=4x的焦点作倾斜角为的弦,若弦长不超过8,则的取值范围是________________________________. 19.若动点(x,y)在曲线(b>0)上变化,则x2 + 2y的最大值为 . 20.曲线(α为参数)与曲线(β为参数)的离心率分别为e1和e2, 则e1+e2的最小值为_______________. 极坐标与参数方程单元练习2参考答案 答案:1.ρcosθ= -1;2.;3.;4.等边三角形;5.(x-2)2+(y-2)2=2; ;9、1;6.θ1>θ2;7.相交;8. 10+6;9.两条射线;10.x-3y=5(x≥2);(5, 0);12.椭圆;13.;14.; 15.700;16.相切;17.(-1,2)或(-3,4);18.;19.;20. 极坐标与参数方程单元练习3 一.选择题(每题5分共60分) 1.设椭圆的参数方程为,,是椭圆上两点,M,N对应的参数为且,则 A. B. C. D. 2.直线:3x-4y-9=0与圆:,(θ为参数)的位置关系是( ) A.相切 B.相离 C.直线过圆心 D.相交但直线不过圆心 3.经过点M(1,5)且倾斜角为的直线,以定点M到动 点P的位移t为参数的参数方程是( ) A. B. C. D. 4.参数方程 (t为参数)所表示的曲线是 ( ) A.一条射线 B.两条射线 C.一条直线 D.两条直线 5.若动点(x,y)在曲线(b>0)上变化,则x2+2y的最大值为 (A) ; (B) ;(C) (D) 2b。 6.实数x、y满足3x2+2y2=6x,则x2+y2的最大值为( )A、 B、4 C、 D、5 7.曲线的参数方程为(t是参数),则曲线是A、线段 B、双曲线的一支 C、圆 D、射线 8. 已知动园:,则圆心的轨迹是 A、直线 B、圆 C、抛物线的一部分 D、椭圆 9. 在参数方程(t为参数)所表示的曲线上有B、C两点,它们对应的参数值分别为t1、t2,则线段BC的中点M对应的参数值是 10.设,那么直线与圆的位置关系是 A、相交 B、相切 C、相离 D、视的大小而定 11. 下列参数方程(t为参数)中与普通方程x2-y=0表示同一曲线的是 12.已知过曲线上一点P,原点为O,直线PO的倾斜角为,则P点坐标是A、(3,4) B、 C、(-3,-4) D、 二.填空题(每题5分共25分) 13.过抛物线y2=4x的焦点作倾斜角为的弦,若弦长不超过8,则的取值范围是__________。 14.直线上与点距离等于的点的坐标是 15.圆锥曲线的准线方程是 16.直线过点,倾斜角是,且与直线交于,则的长为 17.曲线(α为参数)与曲线(β为参数)的离心率分别为e1和e2,则e1+e2的最小值为_______________. 三.解答题(共65分 18. 19.已知方程。 (1)试证:不论如何变化,方程都表示顶点在同一椭圆上的抛物线; (2)为何值时,该抛物线在直线x=14上截得的弦最长?并求出此弦长。 20.已知椭圆上两个相邻顶点为A、C,又B、D为椭圆上的两个动点,且B、D分别在直线AC的两旁,求四边形ABCD面积的最大值。 21.已知过点P(1,-2),倾斜角为的直线l和抛物线x2=y+m (1)m取何值时,直线l和抛物线交于两点?(2)m取何值时,直线l被抛物线截下的线段长为. 极坐标与参数方程单元练习3参考答案 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 B D A B A B D D B B D D 13. ;14. ; 15. ;16.;17. 18.解:把直线参数方程化为标准参数方程 19(1)把原方程化为,知抛物线的顶点为它是在椭圆上;(2)当时,弦长最大为12。 20、21.(1)m>,(2)m=3 极坐标与参数方程单元练习4 (一)选择题: [ ] A.(2,-7) B.(1,0) A.20° B.70° C.110° D.160° [ ] A.相切 B.相离 C.直线过圆心 D.相交但直线不过圆心 A.椭圆 B.双曲线 C.抛物线 D.圆 [ ] C.5 D.6 (二)填空题: 8.设y=tx(t为参数),则圆x2+y2-4y=0的参数方程是______. 10.当m取一切实数时,双曲线x2-y2-6mx-4my+5m2-1=0的中心的轨迹方程为______. (三)解答题: 时矩形对角线的倾斜角α. 13.直线l经过两点 P(-1,2)和Q(2,-2),与双曲线(y-2)2-x2=1相交于两点A、B, (1)根据下问所需写出l的参数方程; (2)求AB中点M与点P的距离. 14.设椭圆4x2+y2=1的平行弦的斜率为2,求这组平行弦中点的轨迹. 15.若不计空气阻力,炮弹运行轨道是抛物线.测得我炮位A与炮击目标B在同一水平线上,水平距离为6000米,炮弹运行的最大高度为1200米.求炮弹的发射角α和发射初速度v0(重力加速度g=9.8米/秒2). 极坐标与参数方程单元练习4参考答案 (一)1.C 2.C 3.D 4.B 5.A(二)6.(1,0),(-5,0)7.4x2-y2=16(x≥2) 9.(-1,5),(-1,-1)10.2x+3y=0 (三)11.圆x2+y2-x-y=0. 14.取平行弦中的一条弦AB在y轴上的截距m为参数,并设A(x1, 设弦AB的中点为M(x,y),则 15.在以A为原点,直线AB的x轴的直角坐标系中,弹道方程是 它经过最高点(3000,1200)和点B(6000,0)的时间分别设为t0和2t0,代入参数方程,得 极坐标与参数方程单元练习5 一.选择题(每题5分共50分) 1.已知,下列所给出的不能表示点的坐标的是 A. B. C. D. 2.点,则它的极坐标是A. B. C. D. 3.极坐标方程表示的曲线是A.双曲线 B.椭圆 C.抛物线 D.圆 4.圆的圆心坐标是A. B. C. D. 5.在极坐标系中,与圆相切的一条直线方程为 A. B. C. D. 6、 已知点则为 A、正三角形 B、直角三角形 C、锐角等腰三角形 D、直角等腰三角形 7、表示的图形是 A.一条射线 B.一条直线 C.一条线段 D.圆 8、直线与的位置关系是 A、平行 B、垂直 C、相交不垂直 D、与有关,不确定 9.两圆,的公共部分面积是A. B. C. D. 10.已知点的球坐标是,的柱坐标是,求. A. B. C. D. 二.填空题(每题5分共25分) 11.极坐标方程化为直角坐标方程是 12.圆心为,半径为3的圆的极坐标方程为 13.已知直线的极坐标方程为,则极点到直线的距离是 14、在极坐标系中,点P到直线的距离等于____________。 15、与曲线关于对称的曲线的极坐标方程是________________________。 三.解答题(共75分) 16.说说由曲线得到曲线的变化过程,并求出坐标伸缩变换。(7分) 17.已知,O为极点,求使是正三角形的点坐标。(8分) 18.棱长为1的正方体中,对角线与相交于点P,顶点O为坐标原点,OA、OC分别在的正半轴上,已知点P的球坐标,求。(10分) 19.的底边以B点为极点,BC 为极轴,求顶点A 的轨迹方程。(10分) 20.在平面直角坐标系中已知点A(3,0),P是圆珠笔上一个运点,且的平分线交PA于Q点,求Q 点的轨迹的极坐标方程。 (10分) 21、在极坐标系中,已知圆C的圆心C,半径=1,Q点在圆C上运动。(10分) (1)求圆C的极坐标方程;(2)若P在直线OQ上运动,且OQ∶QP=2∶3,求动点P的轨迹方程。 22、建立极坐标系证明:已知半圆直径∣AB∣=2(>0),半圆外一条直线与AB所在直线垂直相交于点T,并且∣AT∣=2。若半圆上相异两点M、N到的距离∣MP∣,∣NQ∣满足∣MP∣∶∣MA∣=∣NQ∣∶∣NA∣=1,则 ∣MA∣+∣NA∣=∣AB∣。 (10分) 23.如图,,D是垂足,H是AD上任意一点,直线BH与AC交于E点,直线CH与AB交于F点,求证:(10分) 极坐标与参数方程单元练习5参考答案 答案一.选择题 题号 1 2 3 4 5 6 7 8 9 10 答案 A C D A B D A B C A 二.填空题 11.;12.;13.; 14.;15. 三.解答题 16.解:的图象上的点的纵坐标不变,横坐标缩短为原来的,得到,再将其纵坐标伸长为原来的3倍,横坐标不变,得到曲线。 设,变换公式为 将其代入得, 17.或18. 19.解:设是曲线上任意一点,在中由正弦定理得: 得A的轨迹是: 20.解:以O为极点,轴正半轴为极轴建立极坐标系,设, 21.(1)(2) 22.证法一:以A为极点,射线AB为极轴建立直角坐标系,则半圆的的极坐标方程为,设,则,,又,, 是方程的两个根,由韦达定理:, 证法二:以A为极点,射线AB为极轴建立直角坐标系,则半圆的的极坐标方程为,设 又由题意知,在抛物线上,,,是方程的两个根,由韦达定理:, 23.证明:以BC所在的直线为轴,AD所在的直线为轴建立直角坐标系,设,,,,则 ,即 ,即 ,即 ,即 , 坐标系与参数方程单元练习6 一、选择题 1.若直线的参数方程为,则直线的斜率为( )A. B.C. D. 2.下列在曲线上的点是( ) A. B. C. D. 3.将参数方程化为普通方程为( ) A. B. C. D. 4.化极坐标方程为直角坐标方程为( ) A. B. C. D. 5.点的直角坐标是,则点的极坐标为( ) A. B. C. D. 6.极坐标方程表示的曲线为( ) A.一条射线和一个圆 B.两条直线 C.一条直线和一个圆 D.一个圆 二、填空题 1.直线的斜率为______________________。 2.参数方程的普通方程为__________________。 3.已知直线与直线相交于点,又点, 则_______________。 4.直线被圆截得的弦长为______________。 5.直线的极坐标方程为____________________。 三、解答题 1.已知点是圆上的动点, (1)求的取值范围;(2)若恒成立,求实数的取值范围。 2.求直线和直线的交点的坐标,及点 与的距离。 3.在椭圆上找一点,使这一点到直线的距离的最小值。 坐标系与参数方程单元练习6参考答案 一、选择题 1.D 2.B 转化为普通方程:,当时, 3.C 转化为普通方程:,但是 4.C 5.C 都是极坐标 6.C 则或 二、填空题 1. 2. 3. 将代入得,则,而,得 4. 直线为,圆心到直线的距离,弦长的一半为,得弦长为 5. ,取 三、解答题 1.解:(1)设圆的参数方程为, (2) 2.解:将代入得, 得,而,得 3.解:设椭圆的参数方程为, 当时,,此时所求点为。 坐标系与参数方程单元练习7 一、选择题 1.直线的参数方程为,上的点对应的参数是,则点与之间的距离是( )A. B. C. D. 2.参数方程为表示的曲线是( ) A.一条直线 B.两条直线 C.一条射线 D.两条射线 3.直线和圆交于两点, 则的中点坐标为( )A. B. C. D. 4.圆的圆心坐标是( ) A. B. C. D. 5.与参数方程为等价的普通方程为( ) A. B. C. D. 6.直线被圆所截得的弦长为( ) A. B. C. D. 二、填空题 1.曲线的参数方程是,则它的普通方程为__________________。 2.直线过定点_____________。 3.点是椭圆上的一个动点,则的最大值为___________。 4.曲线的极坐标方程为,则曲线的直角坐标方程为________________。 5.设则圆的参数方程为__________________________。 三、解答题 1.参数方程表示什么曲线? 2.点在椭圆上,求点到直线的最大距离和最小距离。 3.已知直线经过点,倾斜角, (1)求直线的参数方程。(2)设与圆相交与两点,求点到两点的距离之积。 坐标系与参数方程单元练习7参考答案 一、选择题 1.C 距离为 2.D 表示一条平行于轴的直线,而,所以表示两条射线 3.D ,得, 中点为 4.A 圆心为 5.D 6.C ,把直线代入 得 ,弦长为 二、填空题 1. 而,即 2. ,对于任何都成立,则 3. 椭圆为,设, 4. 即 5. ,当时,;当时,; 而,即,得 三、解答题 1.解:显然,则 即得,即 2.解:设,则 即,当时,; 当时,。 3.解:(1)直线的参数方程为,即 (2)把直线代入 得 ,则点到两点的距离之积为 坐标系与参数方程单元练习8 一、选择题 1.把方程化为以参数的参数方程是( ) A. B. C. D. 2.曲线与坐标轴的交点是( ) A. B. C. D. 3.直线被圆截得的弦长为( ) A. B. C. D. 4.若点在以点为焦点的抛物线上, 则等于( )A. B. C. D. 5.极坐标方程表示的曲线为( )A.极点 B.极轴 C.一条直线 D.两条相交直线 6.在极坐标系中与圆相切的一条直线的方程为( ) A. B. C. D. 二、填空题 1.已知曲线上的两点对应的参数分别为,,那么=_______________。 2.直线上与点的距离等于的点的坐标是_______。 3.圆的参数方程为,则此圆的半径为_______________。 4.极坐标方程分别为与的两个圆的圆心距为_____________。 5.直线与圆相切,则_______________。 三、解答题 1.分别在下列两种情况下,把参数方程化为普通方程: (1)为参数,为常数;(2)为参数,为常数; 2.过点作倾斜角为的直线与曲线交于点, 求的最小值及相应的的值。 坐标系与参数方程单元练习8参考答案 一、选择题 1.D ,取非零实数,而A,B,C中的的范围有各自的限制 2.B 当时,,而,即,得与轴的交点为; 当时,,而,即,得与轴的交点为 3.B ,把直线代入 得 ,弦长为 4.C 抛物线为,准线为,为到准线的距离,即为 5.D ,为两条相交直线 6.A 的普通方程为,的普通方程为 圆与直线显然相切 二、填空题 1. 显然线段垂直于抛物线的对称轴。即轴, 2.,或 3. 由得 4. 圆心分别为和 5.,或 直线为,圆为,作出图形,相切时, 易知倾斜角为,或 三、解答题 1.解:(1)当时,,即; 当时, 而,即 (2)当时,,,即; 当时,,,即; 当时,得,即 得即。 2.解:设直线为,代入曲线并整理得 则 所以当时,即,的最小值为,此时。 收集于网络,如有侵权请联系管理员删除- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高中数学 选修 坐标 参数 方程 练习题 知识 讲解
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【丰****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【丰****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【丰****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【丰****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文