新北师大版七年级下数学知识点讲课稿.doc
《新北师大版七年级下数学知识点讲课稿.doc》由会员分享,可在线阅读,更多相关《新北师大版七年级下数学知识点讲课稿.doc(11页珍藏版)》请在咨信网上搜索。
1、新北师大版七年级下数学知识点精品文档北师大版数学(七年级下册)知识点总结第一章:整式的运算 1、同底数幂乘法的运算法则:同底数幂相乘,底数不变,指数相加。即:aman=am+n。逆用,即:am+n = aman。2、幂的乘方运算法则:幂的乘方,底数不变,指数相乘。(am)n =amn。逆用,即:amn =(am)n=(an)m。3、积的乘方运算法则:积的乘方,等于把积中的每个因式分别乘方,然后把所得的幂相乘。即(ab)n=anbn。逆用,即:anbn =(ab)n。4、同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即:aman=am-n(a0)。逆用,即:am-n = aman(a0)
2、。5、零指数幂:任何不等于0的数的0次幂都等于1,即:a0=1(a0)。6、负指数幂:任何不等于零的数的p次幂,等于这个数的p次幂的倒数,即:7、单项式与单项式相乘单项式乘法法则:单项式与单项式相乘,把它们的系数、相同字母的幂分别相乘,其余字母连同它的指数不变,作为积的因式。8、单项式与多项式相乘单项式与多项式乘法法则:单项式与多项式相乘,就是根据分配率用单项式去乘多项式中的每一项,再把所得的积相加。即:m(a+b+c)=ma+mb+mc。(注意)运算时注意积的符号,多项式的每一项都包括它前面的符号。9、多项式与多项式相乘多项式与多项式乘法法则:多项式与多项式相乘,先用一个多项式的每一项乘另一
3、个多项式的每一项,再把所得的积相加。即:(m+n)(a+b)=ma+mb+na+nb。(注意)多项式的每一项都包含它前面的符号,确定积中每一项的符号时应用“同号得正,异号得负”。10、对于含有同一个字母的一次项系数是1的两个一次二项式相乘时,可以运用下面的公式简化运算:(x+a)(x+b)=x2+(a+b)x+ab。11、平方差公式(a+b)(a-b)=a2-b2,即:两数和与这两数差的积,等于它们的平方之差。逆用,即:a2-b2=(a+b)(a-b)。关键找准a和b。符号相同的是a。符号不同的是b简算118122=(120-2)(120+2)=120-2=14400-4=1439612、完全
4、平方公式即:两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍。简算199=(200-1)=200-22001+1=40000-400+1=39601*掌握理解完全平方公式的变形公式:(1)(2)(3)完全平方式:我们把形如:的二次三项式称作完全平方式。完全平方公式可以逆用,即:13、整式的除法单项式除以单项式的法则:一般地,单项式相除,把系数、同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同它的指数一起作为商的一个因式。(注意)单项式相除与单项式相乘计算方法类似,也是分成系数、相同字母与不相同字母三部分分别进行考虑。多项式除以单项式的法则:多项式除以单项
5、式,先把这个多项式的每一项分别除以单项式,再把所得的商相加。用字母表示为:多项式除以单项式,注意多项式各项都包括前面的符号。14、看到2n想到偶数,看到2n+1或2n-1想到奇数15、(x-y)如果n为偶数可颠倒x与y的位置即(x-y)=(y-x).如果n为奇数颠倒x与y的位置后,要在括号前添负号,即(x-y)=-(y-x) 第二章平行线与相交线1、余角 ;如果两个角的和是直角,那么称这两个角互为余角,简称为互余。2、补角:如果两个角的和是平角,那么称这两个角互为补角,简称为互补。3、余角和补角的性质:同角或等角的余角相等,同角或等角的补角相等。4、余角和补角的性质用数学语言可表示为:(1)则
6、(同角的余角(或补角)相等)。(2)且则(等角的余角(或补角)相等)。5、对顶角:一个角的两边分别是另一个角的两边的反向延长线,这两个角叫做对顶角。6、对顶角的性质:对顶角相等。7、对顶角是从位置上定义的,对顶角一定相等,但相等的角不一定是对顶角。8、垂直:直线AB,CD互相垂直,记作“ABCD”(或“CDAB”),读作“AB垂直于CD”(或“CD垂直于AB”)。9、垂线的性质:性质1:平面内,过一点有且只有一条直线与已知直线垂直。性质2:直线外一点与直线上各点连接的所有线段中,垂线段最短。简称:垂线段最短。10、点到直线的距离:点到直线的垂线段的长度11、同一平面内,两条直线的位置关系:相交
7、(垂直)或平行。12、两条直线被第三条直线所截,形成了8个角。同位角:两个角都在两条直线的同侧,并且在第三条直线(截线)的同旁,这样的一对角叫做同位角。内错角:两个角都在两条直线之间,并且在第三条直线(截线)的两旁,这样的一对角叫做内错角。同旁内角:两个角都在两条直线之间,并且在第三条直线(截线)的同旁,这样的一对角叫同旁内角。12、平行线:在同一个平面内,不相交的两条直线叫做平行线。注意:(1)平行线是无限延伸的,无论怎样延伸也不相交。(2)当遇到线段、射线平行时,指的是线段、射线所在的直线平行。13、平行线公理及其推论平行公理:经过直线外一点,有且只有一条直线与这条直线平行。推论:如果两条
8、直线都和第三条直线平行,那么这两条直线也互相平行。补充平行线的判定方法:(1)平行于同一条直线的两直线平行。(2)在同一平面内,垂直于同一条直线的两直线平行。(3)平行线的定义。14、平行线的判定方法(1)、同位角相等,两直线平行。(2)、内错角相等,两直线平行。(3)、同旁内角互补,两直线平行。(4)、在同一平面内,如果两条直线都平行于第三条直线,那么这两条直线平行。(5)、在同一平面内,如果两条直线都垂直于第三条直线,那么这两条直线平行。15、平行线的性质(1)、两直线平行,同位角相等。(2)、两直线平行,内错角相等。(3)、两直线平行,同旁内角互补。16、平行线的判定与性质具备互逆的特征
9、,其关系如下:17、尺规作线段和角:在几何里,只用没有刻度的直尺和圆规作图称为尺规作图。18、尺规作图的关键:取半径相等的弧,取弧的宽度相等。不要忘记答。(。就是所求的。)第三章三角形1、三角形概念:不在同一条直线上的三条线段首尾顺次相接所组成的图形,称为三角形,可以用符号“”表示。顶点A所对的边BC用a表示,边AC、AB分别用b,c来表示;2、三角形中三边的关系:三角形任意两边之和大于第三边,任意两边之差小于第三边。两边之差 第三边两边之和3、判断三条线段能否组成三角形:当两条较短线段之和大于最长线段时,则可以组成三角形。4、三角形内角和定理:三角形的三个内角的和等于1800。5、三角形按内
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 北师大 年级 数学 知识点 讲课
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【天****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【天****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。