自动控制原理课程设计--频率法设计串联滞后——超前校正装置电子教案.doc
《自动控制原理课程设计--频率法设计串联滞后——超前校正装置电子教案.doc》由会员分享,可在线阅读,更多相关《自动控制原理课程设计--频率法设计串联滞后——超前校正装置电子教案.doc(20页珍藏版)》请在咨信网上搜索。
自动控制原理课程设计--频率法设计串联滞后——超前校正装置 精品文档 目录 设计任务....................................................3 设计要求....................................................3 设计步骤....................................................3 未校正前系统的性能分析.........................................3 1.1开环增益............................................3 1.2校正前系统的各种波形图.................................4 1.3由图可知校正前系统的频域性能指标.......................7 1.4特征根.................................................7 1.5判断系统稳定性.........................................7 1.6分析三种曲线的关系.....................................7 1.7求出系统校正前动态性能指标及稳态误差...................7 1.8绘制系统校正前的根轨迹图...............................7 1.9绘制系统校正前的Nyquist图.............................9 校正后的系统的性能分析.........................................10 2.1滞后超前校正...........................................10 2.2校正前系统的各种波形图................................11 2.3由图可知校正前系统的频域性能指标......................15 2.4特征根................................................15 2.5判断系统稳定性........................................15 2.6分析三种曲线的关系....................................15 2.7求出系统校正前动态性能指标及稳态误差..................15 2.8绘制系统校正前的根轨迹图和Nyquist图..................16 心得体会....................................................18 主要参考文献................................................18 一、 设计任务 已知单位负反馈系统的开环传递函数,试用频率法设计串联滞后——超前校正装置。 (1)使系统的相位裕度 (2)静态速度误差系数 (3)幅值穿越频率 二、 设计要求 (1)首先,根据给定的性能指标选择合适的校正方式对原系统进行校正,使其满足工作要求。要求程序执行的结果中有校正装置传递函数和校正后系统开环传递函数,校正装置的参数T,等的值。 (2)利用MATLAB函数求出校正前与校正后系统的特征根,并判断其系统是否稳定,为什么? (3)利用MATLAB作出系统校正前与校正后的单位脉冲响应曲线,单位阶跃响应曲线,单位斜坡响应曲线,分析这三种曲线的关系?求出系统校正前与校正后的动态性能指标σ%、tr、tp、ts以及稳态误差的值,并分析其有何变化? (4)绘制系统校正前与校正后的根轨迹图,并求其分离点、汇合点及与虚轴交点的坐标和相应点的增益值,得出系统稳定时增益的变化范围。绘制系统校正前与校正后的Nyquist图,判断系统的稳定性,并说明理由? (5)绘制系统校正前与校正后的Bode图,计算系统的幅值裕量,相位裕量,幅值穿越频率和相位穿越频率。判断系统的稳定性,并说明理由? 三、 设计步骤 开环传递函数 1、未校正前系统的性能分析 1.1开环增益 已知系统中只有一个积分环节,所以属于I型系统 由静态速度误差系数 可选取=600rad/s 开环传递函数为 1.2通过MATLAB绘制出校正前系统的bode图和校正前系统的单位阶跃响应图分别如: MATALAB程序为: >> clear >> k=600;n1=1;d1=conv(conv([1 0],[0.1 1]),[0.01 1]); s1=tf(k*n1,d1); >> figure(1);sys=feedback(s1,1);step(sys) >> c=dcgain(sys);[y,t]=step(sys);[max_y,k]=max(y);tp=t(k) >> max_overshoot=100*(max_y-c)/c >> r1=1; >> while(y(r1)<0.1*c) r1=r1+1; end >> r2=1; >> while(y(r2)<0.9*c) r2=r2+1; end >> tr=t(r2)-t(r1) >> s=length(t); >> while y(s)>0.98c&&y(s)<1.02*c s=s-1; end >> ts=t(s) >> figure(2);margin(s1);hold on >>figure(3);sys=feedback(s1,1);impulse(sys) >>figure(4);step(k*n1,[d1,0]) >>ess=1-dcgain(sys) 图1-1校正前系统的bode 图 图1-2校正前系统的单位阶跃响应 图1-3校正前系统的单位脉冲响应 图1-4校正前系统的单位斜坡响应 1.3由图可知校正前系统的频域性能指标如下: 幅值裕度 =-14.7; 穿越频率=31.6; 相角裕度r=-26.8度; 剪切频率=69.8。 1.4特征根: 1.5判断系统稳定性 (1)由图1可以看出,之前对数幅频渐近特性曲线所对应的相频特性曲线穿越了,(2)由特征根可以看出,有根在右半平面,因此系统不稳定,按本题要求,需要进行串联滞后超前校正。 1.6分析校正前单位脉冲响应曲线,单位阶跃响应曲线,单位斜坡响应曲线,这三种曲线的关系 单位斜坡响应的一次导数是阶跃响应曲线,阶跃响应的一次导数是冲击响应。 1.7求出系统校正前动态性能指标σ%、tr、tp、ts以及稳态误差的值 max_overshoot = 560.9737 tr =0.0145 tp =0.1489 ts =0.1998 ess =0 1.8绘制系统校正前的根轨迹图,并求其分离点、汇合点及与虚轴交点的坐标和相应点的增益值,得出系统稳定时增益的变化范围。 程序: >> clear >> k=600;n1=1;d1=conv(conv([1 0],[0.1 1]),[0.01 1]); s1=tf(k*n1,d1); >> k=0:0.05:200; >> figure(1);rlocus(s1,k) >> figure(2);nyquist(s1) >> [k,poles]=rlocfind(s1) Select a point in the graphics window selected_point = -97.7488 - 1.5528i k = 0.0391 poles = 1.0e+002 * -1.0248 -0.0376 + 0.1466i -0.0376 - 0.1466i 图1-5校正前系统的根轨迹 分离点-10与虚轴的交点为-97.7488 1.5528i,当取 -97.7488 - 1.5528i点时,k=(0 0.0391) 1.9绘制系统校正前的Nyquist图,判断系统的稳定性,并说明理由。 图1-6校正前系统的耐奎斯特曲线 因为系统的耐奎斯特曲线顺时针包围(-1,j0)点1圈,所以R=-1,没有实部为正的极点所以P=0,Z=P-R=1,闭环系统不稳定。 2、校正后的系统的性能分析 2.1滞后超前校正 题目中要求,取=35rad/s,过处作一斜率为-20 dB/dec的直线作为期望特性的中频段。 -20db/dec -40db/dec -40db/dec 100 Wc0=69.8 10 -20db/dec -40db/dec Wc=35 -60db/dec W2=8 -20db/dec +20db/dec 图2-1 为使校正后系统的开环增益不低于250rad/s,期望特性的低频段应与未校正系统特性一致。而未校正系统的低频段斜率与期望特性的中频段斜率同为-20dB/dec,即两线段平行,为此,需在期望特性的中频段与低频段之间用一斜率为-40 dB/dec的直线作连接线。连接线与中频段特性相交的转折频率2距不宜太近,否则难于保证系统相角裕度的要求。现按 的原则 选取 为使校正装置不过于复杂,期望特性的高频段与未校正系统特性一致。由于未校正系统高频段特性的斜率是-60dB/dec,故期望特性中频段与高频段之间也应有斜率为-40 dB/dec的直线作为连接线。 用未校正系统的特性Lo减去期望特性,就得到串联校正装置的对数幅频特性Lc,它表明,应在系统中串联相位滞后-超前校正装置。 其传递函数为: 式中: 由上图可以写出 因此,串联滞后-超前校正装置的传递函数为 校正后系统的开环传递函数为 2.2通过MATLAB绘制出校正后系统的bode图和校正后系统的单位阶跃响应图分别如: MATALAB程序为: >> clear >> n1=600;d1=conv(conv([1 0],[0.1 1]),[0.01 1]); >> s1=tf(n1,d1); >> s2=tf([0.143 1],[2.47 1]); >> s3=tf([0.1 1],[0.006 1]); >> sope=s1*s2*s3; >> figure(1);margin(sope);hold on >> figure(2);sys=feedback(sope,1);step(sys) >> [y,t]=step(sys); >> c=dcgain(sys); >> [max_y,k]=max(y); >> tp=t(k) >> max_overshoot=100*(max_y-c)/c >> r1=1; >> while(y(r1)<0.1*c) r1=r1+1; end >> r2=1; >> while(y(r2)<0.9*c) r2=r2+1; end >> tr=t(r2)-t(r1) >> s=length(t); >> while y(s)>0.98*c&&y(s)<1.02*c s=s-1; end >> ts=t(s) >> figure(3);sys=feedback(s1,1);impulse(sys) >> figure(4);step(k*n1,[d1,0]) >> ess=1-dcgain(sys) 图2-2校正后系统的bode图 图2-3校正后系统的单位阶跃响应图 图2-4校正后系统的单位脉冲响应图 图2-5校正后系统的单位斜坡响应图 2.3由图可知校正前系统的频域性能指标如下: 幅值裕度 =16.7; 穿越频率=122; 相角裕度r=49.2度; 剪切频率=33.1。 满足相位裕度,幅值穿越频率两个条件,完成系统校正。 2.4特征根: 2.5判断系统稳定性 由图1可以看出,之前对数幅频渐近特性曲线所对应的相频特性曲线没有穿越,或者看特征根,可以看出所有的根都在左半平面,因此系统稳定。 2.6分析校正后单位脉冲响应曲线,单位阶跃响应曲线,单位斜坡响应曲线,这三种曲线的关系,并分析其与校正前相比有何变化 单位斜坡响应的一次导数是阶跃响应曲线,阶跃响应的一次导数是冲击响应。 2.7求出系统校正后动态性能指标σ%、tr、tp、ts以及稳态误差的值 max_overshoot =25.3951 tr =0.0362 tp = 0.0859 ts = 0.3210 ess =0 与校正前作比较,可以发现,校正后阶跃响应波形上升时间变长,峰值时间变短, 调节时间变长,超调量大大减小,稳态误差保持不变。 2.8绘制系统校正后的根轨迹图,并求其分离点、汇合点及与虚轴交点的坐标和相应点的增益值,得出系统稳定时增益的变化范围。绘制系统校正后的Nyquist图,判断系统的稳定性,并说明理由。 >> clear >> n1=600;d1=conv(conv([1 0],[0.1 1]),[0.01 1]); >> s1=tf(n1,d1); >> s2=tf([0.143 1],[2.47 1]); >> s3=tf([0.1 1],[0.006 1]); >> sope=s1*s2*s3; >> k=0:0.05:200; >> figure(1);rlocus(sope,k) >> figure(2);nyquist(sope) >> [k,poles]=rlocfind(sope) Select a point in the graphics window selected_point = -1.6588 +77.6398i k = 3.0581 poles = 1.0e+002 * -2.2659 -0.1653 + 0.8416i -0.1653 - 0.8416i -0.1000 -0.0743 分离点-40.2+3.41i与虚轴的交点为-1.6588 77.6398i,当取 -1.6588 +77.6398i点时,k=(0 3.0581) 图2-6校正后系统的根轨迹 图2-7校正后系统的耐奎斯特曲线 因为系统的耐奎斯特曲线顺时针包围(-1,j0)点0圈,所以R=0,没有实部为正的极点所以P=0,Z=P-R=0,闭环系统稳定。 四、 心得体会 通过此次的课程设计,我深刻体会到对知识理解和应用的重要性,学习书本知识固然重要,但是遇到课程设计这种题目的时候还是不够,它需要全方面的思考和验证,在选取一个数值时,要前后分析计算出理论值,再用MATLAB进行验证,不满足要求的需要重新选择一个新的数值进行下一轮的计算,这个过程不是一步就能达到的,我在做这个设计时就进行了反复的选取数值前后运算,最终才找到一个符合条件的。 万幸的是,我之前就学习过如何用matlab,这给我的课程设计解决了对软件不上手的问题。 总之,这次的课程设计让我对书本知识有了更深刻的理解,能将书本知识在设计中运用自如,提高了我的学习意识和学习能力。 五、主要参考文献 1、程 鹏 .自动控制原理[M] .北京:高等教育出版社, 2009 2、徐薇莉. 自动控制理论与设计[M] 上海:上海交通大学出版社,2001 3、欧阳黎明. MATLAB控制系统设计[M]. 北京: 国防工业出版社,2001 收集于网络,如有侵权请联系管理员删除- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 自动控制 原理 课程设计 频率 设计 串联 滞后 超前 校正 装置 电子 教案
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【丰****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【丰****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【丰****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【丰****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文