新北师大版七年级数学下册第一章整式的乘除导学案教学提纲.doc
《新北师大版七年级数学下册第一章整式的乘除导学案教学提纲.doc》由会员分享,可在线阅读,更多相关《新北师大版七年级数学下册第一章整式的乘除导学案教学提纲.doc(40页珍藏版)》请在咨信网上搜索。
1、新北师大版七年级数学下册第一章整式的乘除导学案精品文档第一章 整式的乘除1.1 同底数幂的乘法一、学习目标1经历探索同底数幂乘法运算性质过程,进一步体会幂的意义2了解同底数幂乘法的运算性质,并能解决一些实际问题二、学习重点:同底数幂的乘法运算法则的推导过程以及相关计算三、学习难点:对同底数幂的乘法公式的理解和正确应用四、学习设计(一)预习准备预习书p2-4(二)学习过程1.试试看:(1)下面请同学们根据乘方的意义做下面一组题:=a3a4=a( )(2)根据上面的规律,请以幂的形式直接写出下列各题的结果:= = = = 2.猜一猜:当,为正整数时候, =即aman= (m、n都是正整数)3.同底
2、数幂的乘法法则:同底数幂相乘 运算形式:(同底、乘法) 运算方法:(底不变、指加法)当三个或三个以上同底数幂相乘时,也具有这一性质, 用公式表示为 amanap = am+n+p (m、n、p都是正整数)练习1. 下面的计算是否正确? 如果错,请在旁边订正(1)a3a4=a12 (2)mm4=m4 ( 3)a2b3=ab5 (4)x5+x5=2x10(5)3c42c2=5c6 (6)x2xn=x2n (7)2m2n=2mn (8)b4b4b4=3b42填空:(1)x5 ( )=x 8 (2)a ( )=a6(3)x x3( )= x7 (4)xm ( )x3m(5)x5x( )=x3x7=x(
3、 ) x6=xx( ) (6)an+1a( )=a2n+1=aa( )例1计算(1)(x+y)3 (x+y)4 (2)(3) (4)(m是正整数)变式训练计算(1)(2) (3). (4) (5)(a-b)(b-a)4 (6) (是正整数)拓展1、填空(1) 8 = 2x,则 x = (2) 8 4 = 2x,则 x = (3) 3279 = 3x,则 x = .2、 已知am=2,an=3,求的值 3、 12999. c o m4、已知的值。 5、已知的值。回顾小结1同底数幂相乘法则要注重理解“同底、相乘、不变、相加”这八个字2解题时要注意a的指数是13解题时,是什么运算就应用什么法则同底数
4、幂相乘,就应用同底数幂的乘法法则;整式加减就要合并同类项,不能混淆4-a2的底数a,不是-a计算-a2a2的结果是-(a2a2)=-a4,而不是(-a)2+2=a45若底数是多项式时,要把底数看成一个整体进行计算1.2 幂的乘方与积的乘方(1)一、学习目标:1能说出幂的乘方与积的乘方的运算法则2能正确地运用幂的乘方与积的乘方法则进行幂的有关运算二、学习重点:会进行幂的乘方的运算。三、学习难点:幂的乘方法则的总结及运用。四、学习设计:(一)预习准备(1)预习书56页(2)回顾:计算(1)(x+y)2(x+y)3 (2)x2x2x+x4x (3)(0.75a)3(a)4 (4)x3xn-1xn-2
5、x4(二)学习过程:一、 1、探索练习: (62)4表示_个_相乘.a3表示_个_相乘.(a2)3表示_个_相乘.在这个练习中,要引学习生观察,推测(62)4与(a2)3的底数、指数。并用乘方的概念解答问题。 (62)4=_ =_(根据anam=anm) =_ (33)5=_ =_(根据anam=anm) =_ 64表示_个_相乘.(a2)3=_ =_(根据anam=anm) =_(am)2=_ =_(根据anam=anm) =_(am)n=_ =_(根据anam=anm)=_即 (am)n =_(其中m、n都是正整数)通过上面的探索活动,发现了什么?幂的乘方,底数_,指数_2、例题精讲类型一
6、 幂的乘方的计算例1 计算 (54)3 (a2)3 (ab)24 随堂练习(1)(a4)3m; (2)()32; (ab)43类型二 幂的乘方公式的逆用例1 已知ax2,ay3,求a2xy; ax3y随堂练习(1)已知ax2,ay3,求ax3y(2)如果,求x的值随堂练习已知:84432x,求x类型三 幂的乘方与同底数幂的乘法的综合应用例1 计算下列各题 (1) (a)2a7 x3xx4(x2)4(x4)2 (4)(ab)2(ba)3、当堂测评 填空题:(1)(m2)5_;()32_;(ab)23_(2)-(-x)52(-x2)3_;(xm)3(-x3)2_(3)(-a)3(an)5(a1-n
7、)5_; -(x-y)2(y-x)3_(4) x12(x3)(_)(x6)(_)(5)x2m(m1)()m1 若x2m3,则x6m_(6)已知2xm,2yn,求8xy的值(用m、n表示)判断题(1)a5+a5=2a10 ( )(2)(s3)3=x6 ( )(3)(3)2(3)4=(3)6=36 ( )(4)x3+y3=(x+y)3 ( ) (5)(mn)34(mn)26=0 ( )4、拓展:1、 计算 5(P3)4(P2)3+2(P)24(P5)22、 若(x2)n=x8,则m=_.3、 若(x3)m2=x12,则m=_。4、 若xmx2m=2,求x9m的值。5、 若a2n=3,求(a3n)4
8、的值。6、已知am=2,an=3,求a2m+3n的值.回顾小结:1幂的乘方 (am)n_(m、n都是正整数)2语言叙述: 3幂的乘方的运算及综合运用。 1.2 幂的乘方与积的乘方(2)一、学习目标:1能说出幂的乘方与积的乘方的运算法则2能正确地运用幂的乘方与积的乘方法则进行幂的有关运算二、学习重点:积的乘方的运算。三、学习难点:正确区别幂的乘方与积的乘方的异同。四、学习设计:(一)预习准备(1)预习书78页(2)回顾:1、计算下列各式:(1) (2) (3)(4)(5)(6)(7) (8) (9)(10) (11)2、下列各式正确的是( )(A) (B) (C)(D)(二)学习过程:探索练习:
9、1、 计算:2、 计算:3、 计算:从上面的计算中,你发现了什么规律?_ 4、猜一猜填空:(1) (2)(3) 你能推出它的结果吗?结论:例题精讲类型一 积的乘方的计算例1 计算(1)(2b2)5; (2)(4xy2)2 (3)(ab)2 (4)2(ab)35随堂练习(1) (2) (3)(-xy2)2 (4)3(nm)23类型二 幂的乘方、积的乘方、同底数幂相乘、整式的加减混合运算例2 计算(1)-(-x)52(-x2)3 (2)(3)(xy)3(2x2y)2(3x3y)2 (4)(3a3)2a3(a)2a7(5a3)3随堂练习(1)(a2n-1)2(an2)3 (2) (-x4)2-2(x
10、2)3xx(-3x)3x5(3)(ab)23(ab)34类型三 逆用积的乘方法则例1 计算 (1)820040.1252004; (2)(8)20050.1252004随堂练习0.2520240 -32003()2002类型四 积的乘方在生活中的应用例1 地球可以近似的看做是球体,如果用V、r分别代表球的体积和半径,那么Vr3。地球的半径约为千米,它的体积大约是多少立方千米?随堂练习(1)一个正方体棱长是3102 mm,它的体积是多少mm?(2)如果太阳也可以看作是球体,它的半径是地球的102倍,那么太阳的体积约是多少立方千米呢?”当堂测评一、判断题1(xy)3xy3() 2(2xy)36x3
11、y3() 3(-3a3)29a6()4(x)3x3() 5(a4b)4a16b()二、填空题1-(x2)3_,(-x3)2_2(-xy2)2_381x2y10 ()2 4(x3)2x5_ 5(a3)n(an)x(n、x是正整数),则x_6.(0.25)11411_ (0.125)2008201_4、拓展:(1) 已知n为正整数,且x2n4求(3x3n)213(x2)2n的值 (2) 已知xn5,yn3,求(xy)2n的值(3) 若m为正整数,且x2m3,求(3x3m)213(x2)2m的值回顾小结:1.积的乘方 (ab)n (n为正整数)2语言叙述: 3积的乘方的推广(abc)n (n是正整数
12、)1.3 同底数幂的除法一、学习目标了解同底数幂的除法的运算性质,并能解决一些实际问题二、学习重点:会进行同底数幂的除法运算。三、学习难点:同底数幂的除法法则的总结及运用(一)预习准备(1)预习书p9-13(2)思考:0指数幂和负指数幂有没有限制条件?(3)预习作业:1(1)2828= (2)5253=(3)102105= (4)a3a3=2(1)21628=(2)5553=(3)107105=(4)a6a3=(二)学习过程 上述运算能否发现商与除数、被除数有什么关系?得出:同底数幂相除,底数,指数即:aman=(,m,n都是正整数,并且mn)练习:(1) (2)(3)(4)= (5)(6)(
13、-ab)5(ab)2=(8)=提问:在公式中要求 m,n都是正整数,并且mn,但如果m=n或mn呢?计算:3232 103103 amam(a0)= (a0)3232=3()=3() 103103=10()=10() amam=a()=a()(a0)于是规定:a0=1(a0) 即:任何非0的数的0次幂都等于1最终结论:同底数幂相除:aman=am-n(a0,m、n都是正整数,且mn)想一想: 10000=104 , 16=24 1000=10(), 8=2() 100=10 () , 4=2() 10=10 (), 2=2() 猜一猜: 1=10() 1=2() 0.1=10() =2()0.
14、01=10() =2()0.001=10() =2()负整数指数幂的意义:(,p为正整数)或(,p为正整数)例1 用小数或分数分别表示下列各数:练习:1下列计算中有无错误,有的请改正 2若成立,则满足什么条件?3若无意义,求的值4若,则等于?5若,求的的值6用小数或分数表示下列各数:(1) (2) (3) (4)(5)4.2(6)7(1)若 (2)若(3)若0.000 000 33,则 (4)若拓展:8.计算:(n为正整数) 9已知,求整数x的值。回顾小结:同底数幂相除,底数不变,指数相减。1.4整式的乘法(1)一、学习目标:理解并掌握单项式的乘法法则,能够熟练地进行单项式的乘法计算二、学习重
15、点:单项式乘法法则及其应用三、学习难点:理解运算法则及其探索过程(一)预习准备(1)预习书p14-15(2)思考:单项式与单项式相乘可细化为几个步骤?(3)预习作业:1下列单项式各是几次单项式?它们的系数各是什么?次数:系数:2下列代数式中,哪些是单项式?哪些不是?3(1)(a5)5 (2) (a2b)3 (3)(2a)2(3a2)3 (4)(y n)2 y n-1(二)学习过程:整式包括单项式和多项式,从这节课起我们研究整式的乘法,先学习单项式乘以单项式例1. 利用乘法交换律、结合律以及前面所学的幂的运算性质,计算下列单项式乘以单项式:(1) 2x2y3xy2(2) 4a2x5(-3a3bx
16、) 解:原式=()()()解:原式=()()() ()单项式乘以单项式的乘法法则:单项式相乘,把它的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式注意:法则实际分为三点:(1) 系数相乘有理数的乘法;此时应先确定结果的符号,再把系数的绝对值相乘相同字母相乘同底数幂的乘法;(容易将系数相乘与相同字母指数相加混淆)只在一个单项式中含有的字母,连同它的指数作为积的一个因式,不能丢掉这个因式(2)不论几个单项式相乘,都可以用这个法则(3)单项式相乘的结果仍是单项式例1 计算:(1) (-5a2b3)(-3a)(2) (2x)3(-5x2y) (3) =_ (4)
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 北师大 七年 级数 下册 第一章 整式 乘除 导学案 教学 提纲
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【a199****6536】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【a199****6536】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。