考研数学概率与统计真题学习资料.doc
《考研数学概率与统计真题学习资料.doc》由会员分享,可在线阅读,更多相关《考研数学概率与统计真题学习资料.doc(104页珍藏版)》请在咨信网上搜索。
1、考研数学概率与统计真题学习好资料目 录第一章 随机事件和概率1第一节 基本概念11、概念网络图12、重要公式和结论1第二节 重点考核点6第三节 常见题型61、事件的运算和概率的性质62、古典概型和几何概型63、条件概率和乘法公式74、全概和贝叶斯公式75、独立性和伯努利概型8第四节 历年真题9数学一:9数学三:10第二章 随机变量及其分布13第一节 基本概念131、概念网络图132、重要公式和结论13第二节 重点考核点18第三节 常见题型181、常见分布182、函数分布20第四节 历年真题20数学一:20数学三:21第三章 二维随机变量及其分布24第一节 基本概念241、概念网络图242、重要
2、公式和结论25第二节 重点考核点31第三节 常见题型311、二维随机变量联合分布函数312、随机变量的独立性323、简单函数的分布33第四节 历年真题34数学一:34数学三:36第四章 随机变量的数字特征39第一节 基本概念391、概念网络图392、重要公式和结论39第二节 重点考核点43第三节 常见题型431、一维随机变量及其函数的数字特征432、二维随机变量及其函数的数字特征443、独立和不相关454、应用题46第四节 历年真题46数学一:46数学三:49第五章 大数定律和中心极限定理53第一节 基本概念531、概念网络图532、重要公式和结论53第二节 重点考核点55第三节 常见题型55
3、1、大数定律552、中心极限定理55第四节 历年真题56数学一:56数学三:56第六章 数理统计的基本概念57第一节 基本概念571、概念网络图572、重要公式和结论57第二节 重点考核点59第三节 常见题型591、统计量的性质592、统计量的分布60第四节 历年真题60数学一:60数学三:61第七章 参数估计63第一节 基本概念631、概念网络图632、重要公式和结论64第二节 重点考核点67第三节 常见题型671、矩估计和极大似然估计672、估计量的优劣683、区间估计68第四节 历年真题69数学一:69数学三:70第八章 假设检验73第一节 基本概念731、概念网络图732、重要公式和结
4、论73第二节 重点考核点74第三节 常见题型751、单正态总体均值和方差的假设检验752、两类错误75第四节 历年真题76数学一:76数学三:76精品资料第一章 随机事件和概率第一节 基本概念1、概念网络图2、重要公式和结论(1)排列组合公式 从m个人中挑出n个人进行排列的可能数。 从m个人中挑出n个人进行组合的可能数。(2)加法和乘法原理加法原理(两种方法均能完成此事):m+n某件事由两种方法来完成,第一种方法可由m种方法完成,第二种方法可由n种方法来完成,则这件事可由m+n 种方法来完成。乘法原理(两个步骤分别不能完成这件事):mn某件事由两个步骤来完成,第一个步骤可由m种方法完成,第二个
5、步骤可由n 种方法来完成,则这件事可由mn 种方法来完成。(3)一些常见排列重复排列和非重复排列(有序)对立事件(至少有一个)顺序问题(4)随机试验和随机事件如果一个试验在相同条件下可以重复进行,而每次试验的可能结果不止一个,但在进行一次试验之前却不能断言它出现哪个结果,则称这种试验为随机试验。试验的可能结果称为随机事件。(5)基本事件、样本空间和事件在一个试验下,不管事件有多少个,总可以从其中找出这样一组事件,它具有如下性质:每进行一次试验,必须发生且只能发生这一组中的一个事件;任何事件,都是由这一组中的部分事件组成的。这样一组事件中的每一个事件称为基本事件,用来表示。基本事件的全体,称为试
6、验的样本空间,用表示。一个事件就是由中的部分点(基本事件)组成的集合。通常用大写字母A,B,C,表示事件,它们是的子集。为必然事件,为不可能事件。不可能事件()的概率为零,而概率为零的事件不一定是不可能事件;同理,必然事件()的概率为1,而概率为1的事件也不一定是必然事件。(6)事件的关系与运算关系:如果事件A的组成部分也是事件B的组成部分,(A发生必有事件B发生):如果同时有,则称事件A与事件B等价,或称A等于B:A=B。A、B中至少有一个发生的事件:AB,或者A+B。属于A而不属于B的部分所构成的事件,称为A与B的差,记为A-B,也可表示为A-AB或者,它表示A发生而B不发生的事件。A、B
7、同时发生:AB,或者AB。AB=,则表示A与B不可能同时发生,称事件A与事件B互不相容或者互斥。基本事件是互不相容的。-A称为事件A的逆事件,或称A的对立事件,记为。它表示A不发生的事件。互斥未必对立。运算: 结合率:A(BC)=(AB)C A(BC)=(AB)C 分配率:(AB)C=(AC)(BC) (AB)C=(AC)(BC) 德摩根率: ,(7)概率的公理化定义设为样本空间,为事件,对每一个事件都有一个实数P(A),若满足下列三个条件:1 0P(A)1, 2 P() =13 对于两两互不相容的事件,有常称为可列(完全)可加性。则称P(A)为事件的概率。(8)古典概型1 ,2 。设任一事件
8、,它是由组成的,则有P(A)= =(9)几何概型若随机试验的结果为无限不可数并且每个结果出现的可能性均匀,同时样本空间中的每一个基本事件可以使用一个有界区域来描述,则称此随机试验为几何概型。对任一事件A,。其中L为几何度量(长度、面积、体积)。(10)加法公式P(A+B)=P(A)+P(B)-P(AB)当P(AB)0时,P(A+B)=P(A)+P(B)(11)减法公式P(A-B)=P(A)-P(AB)当BA时,P(A-B)=P(A)-P(B)当A=时,P()=1- P(B)(12)条件概率定义 设A、B是两个事件,且P(A)0,则称为事件A发生条件下,事件B发生的条件概率,记为。条件概率是概率
9、的一种,所有概率的性质都适合于条件概率。例如P(/B)=1P(/A)=1-P(B/A)(13)乘法公式乘法公式:更一般地,对事件A1,A2,An,若P(A1A2An-1)0,则有。(14)独立性两个事件的独立性设事件、满足,则称事件、是相互独立的。若事件、相互独立,且,则有若事件、相互独立,则可得到与、与、与也都相互独立。必然事件和不可能事件与任何事件都相互独立。与任何事件都互斥。多个事件的独立性设ABC是三个事件,如果满足两两独立的条件,P(AB)=P(A)P(B);P(BC)=P(B)P(C);P(CA)=P(C)P(A)并且同时满足P(ABC)=P(A)P(B)P(C)那么A、B、C相互
10、独立。对于n个事件类似。(15)全概公式设事件满足1两两互不相容,2,则有。(16)贝叶斯公式设事件,及满足1 ,两两互不相容,0,1,2,2 ,则,i=1,2,n。此公式即为贝叶斯公式。,(,),通常叫先验概率。,(,),通常称为后验概率。贝叶斯公式反映了“因果”的概率规律,并作出了“由果朔因”的推断。(17)伯努利概型我们作了次试验,且满足u 每次试验只有两种可能结果,发生或不发生;u 次试验是重复进行的,即发生的概率每次均一样;u 每次试验是独立的,即每次试验发生与否与其他次试验发生与否是互不影响的。这种试验称为伯努利概型,或称为重伯努利试验。用表示每次试验发生的概率,则发生的概率为,用
11、表示重伯努利试验中出现次的概率,。例11:有5个队伍参加了甲A联赛,两两之间进行循环赛两场,没有平局,试问总共输的场次是多少?例12:到美利坚去,既可以乘飞机,也可以坐轮船,其中飞机有战斗机和民航,轮船有小鹰号和Titanic号,问有多少种走法?例13:到美利坚去,先乘飞机,后坐轮船,其中飞机有战斗机和民航,轮船有小鹰号和Titanic号,问有多少种走法?例14:10人中有6人是男性,问组成4人组,三男一女的组合数。例15:两线段MN和PQ不相交,线段MN上有6个点A1,A2,A6,线段PQ上有7 个点B1,B2,B7。若将每一个Ai和每一个Bj连成不作延长的线段AiBj(i=1,2,6;j=
12、1,2,7),则由这些线段 AiBj相交而得到的交点(不包括A1,A6,B1,B713个点)最多有A 315个 B 316个 C 317个 D 318个例16:3封不同的信,有4个信箱可供投递,共有多少种投信的方法?例17:某市共有10000辆自行车,其牌照号码从00001到10000,求有数字8的牌照号码的个数。例18:3白球,2黑球,先后取2球,放回,至少一白的种数?(有序) 例19:3白球,2黑球,先后取2球,不放回,至少一白的种数?(有序) 例110:3白球,2黑球,任取2球,至少一白的种数?(无序) 例111:化简 (A+B)(A+)(+B)例112: 成立的充分条件为:(1)C (
13、2) C例113:3白球,2黑球,先后取2球,放回,至少一白的概率?例114:3白球,2黑球,先后取2球,不放回,至少一白的概率?例115:3白球,2黑球,任取2球,至少一白的概率?例116:袋中装有个白球及个黑球。从袋中任取a+b个球,试求其中含a个白球,b个黑球的概率(a,b)。从袋中任意地接连取出k+1(k+1+)个球,如果取出后不放回,试求最后取出的是白球的概率。上两题改成“放回”。例117:从6双不同的手套中任取4只,求其中恰有一双配对的概率。例118:有5个白色珠子和4个黑色珠子,从中任取3个,问其中至少有1个是黑色的概率?例119:设O为正方形ABCD坐标为(1,1),(1,-1
14、),(-1,1),(-1,-1)中的一点,求其落在x2+y21的概率。例120:某市共有10000辆自行车,其牌照号码从00001到10000,求偶然遇到的一辆自行车,其牌照号码中有数字8的概率。例121:一只袋中装有五只乒乓球,其中三只白色,两只红色。现从袋中取球两次,每次一只,取出后不再放回。试求:两只球都是白色的概率;两只球颜色不同的概率;至少有一只白球的概率。例122:5把钥匙,只有一把能打开,如果某次打不开就扔掉,问以下事件的概率?第一次打开;第二次打开;第三次打开。例123:某工厂生产的产品以100件为一批,假定每一批产品中的次品最多不超过3件,并具有如下的概率:一批产品中的次品数
15、0123概 率0.10.20.30.4现在进行抽样检验,从每批中抽取10件来检验,如果发现其中有次品,则认为该批产品是不合格的,求一批产品通过检验的概率。例124:某工厂生产的产品以100件为一批,假定每一批产品中的次品最多不超过3件,并具有如下的概率:一批产品中的次品数0123概 率0.10.20.30.4现在进行抽样检验,从每批中抽取10件来检验,如果发现其中有次品,则认为该批产品是不合格的,求通过检验的一批产品中,恰有件次品的概率。例125:A,B,C相互独立的充分条件:(1)A,B,C两两独立(2)A与BC独立例126:甲,乙两个射手彼此独立地射击同一目标各一次,甲射中的概率为0.9,
16、乙射中的概率为0.8,求目标被射中的概率。例127:有三个臭皮匠独立地解决一个问题,成功解决的概率分别为0.45,0.55,0.60,问解决该问题的能力是否赶上诸葛亮(成功概率为0.9)?例128:假设实验室器皿中产生A类细菌与B类细菌的机会相等,且每个细菌的产生是相互独立的,若某次发现产生了个细菌,则其中至少有一个A类细菌的概率是 。例129:袋中装有个白球及个黑球,从袋中任取a+b次球,每次放回,试求其中含a个白球,b个黑球的概率(a,b)。例130:有4组人,每组一男一女,从每组各取一人,问取出两男两女的概率?例131:进行一系列独立的试验,每次试验成功的概率为,则在成功2次之前已经失败
17、3次的概率为:ABCDE第二节 重点考核点事件的运算、概率的定义(古典概型和几何概型)、条件概率和乘法公式、全概和贝叶斯公式、独立性和伯努利概型第三节 常见题型1、事件的运算和概率的性质例132:(AB)-C=(A-C)B 成立的充分条件为:(1)AB= (2)C=例133:A,B,C为随机事件,“A发生必导致B、C同时发生”成立的充分条件为:(1) ABC=A (2)ABC=A例134:设A,B是任意两个随机事件,则= 。例135:假设事件A和B满足P(B | A)=1,则 (A) A是必然事件。(B)。 (C)。(D)。2、古典概型和几何概型例136:有两组数,都是1,2,3,4,5,6,
18、分别任意取出一个,其中一个比另一个大2的概率?例137:52张扑克牌,任取5张牌,求出现一对、两对、同花顺的概率。例138:设有n个质点,每个以相同的概率落入N个盒子中。设A=“指定的n个盒子中各有1个质点”,对以下两种情况,试求事件A的概率。(1)(麦克斯威尔-波尔茨曼统计)假定N个质点是可以分辨的,还假定每个盒子能容纳的质点数不限。(2)(费米-爱因斯坦统计)假定n个质点是不可分辨的,还假定每个盒子至多只能容纳一个质点。例139:袋中有10个球,其中有4个白球、6个红球。从中任取3个,求这三个球中至少有1个是白球的概率。例140:侯车问题:某地铁每隔五分钟有一列车通过,在乘客对列车通过该站
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 考研 数学 概率 统计 学习 资料
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【天****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【天****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。