北师大版五年级上数学课外辅导讲义讲课讲稿.doc
《北师大版五年级上数学课外辅导讲义讲课讲稿.doc》由会员分享,可在线阅读,更多相关《北师大版五年级上数学课外辅导讲义讲课讲稿.doc(75页珍藏版)》请在咨信网上搜索。
第一单元 小数除法 一个数除以小数 一个数除以小数 被除数的小数位数比除数少 小数除法 小数除以整数 整数部分够商1, 整数部分不够商1,用0补 有限小数 循环小数(纯、混循环小数) 不循环小数(有限小数、无限小数) 小数分类 无限小数 四舍五入法(按要求) 进一法 去尾法 解决问题 用连除的方法解决实际问题 “进一法”和“去尾法”在实际问题中的应用 据实际情况 求商的近似值 小数除法混合运算:和整数除法混合运算顺序相同 一、计算小数除法: 1、小数除法的意义:小数除法的意义与整数除法的意义相同,是已知两个因数的积与其中的一个因数,求另一个因数的运算。 2、小数除以整数的计算方法:(1)按整数除法的方法去除;(2)商的小数点要和被除数的小数点对齐;(3)整数部分不够除,商0,点上小数点;(4)如果有余数,要添0再除。 3、除数是小数的计算方法:(1)用商不变定律;(2)按整数除法的方法去除;(3)商的小数点要和被除数的小数点对齐;(4)整数部分不够除,商0,点上小数点;(5)如果有余数,要添0再除。 【注意】人民币兑换:外币×汇率﹦人民币 人民币÷汇率﹦外币。 二、小数四则混合运算: 计算小数四则混合运算的运算顺序与整数四则混合运算的运算顺序相同。整数的运算定律在小数运算中仍然适用。例如乘法的结合律,交换律,分配律等等。 三、求商的近似值:根据要求除到所需保留位数的后一位,再用“四舍五入”法求商的近似值;但有时要根据实际需要,用“进一法”或“去尾法”求商的近似值。 四、循环小数:一个小数,从小数部分的某一位起,一个数字或者几个数字依次不断地重复出现,这样的小数叫做循环小数。 循环节:循环小数中重复出现的数字。 循环小数的一般写法:写两个循环节,点上省略号。 简便写法:写一个循环节,在首位和末位点上循环点。 有限小数:小数位数是有限的小数。 小数 纯循环小数(如:) 循环小数 无限小数:小数位数是无限的小数。 混循环小数(如: ) 无限不循环小数 五、被除数、除数、商的变化规律: 被除数和除数同时扩大(或缩小)相同的倍数,商不变。 除数不变,被除数扩大(或缩小)多少倍,商也扩大(或缩小)多少倍。 被除数不变,除数扩大(或缩小)多少倍,商则缩小(或扩大)多少倍。 六、小数除法中的比大小: 当除数大于1时,商小于被除数。(被除数≠0) 如:4.8÷1.1﹤4.8 当除数小于1时,商大于被除数。(被除数≠0) 如:4.8÷0.9﹥4.8 当除数等于1时,商等于被除数。 如:4.8÷1﹦4.8 七、解决问题:根据实际情况取值,算式上用原数,答上最值;五步骤:审,找,列,算,答。 1、 做一套衣服用布2.4米,28米长的布最多能做多少套衣服? 2、 五(1)班有51人,秋游去划船,每条船只能坐4人,他们一共要租几条船? 3、 1、游艺会上有个节目是“吹气球“。买一包气球有200个,用去29.6元。平均每个气球多少元?(四舍五入保留两位小数) 第一单元测试卷 一、填空题。(20分) 1、 3.2965保留一位小数约是( ),保留三位小数约是( ),保留整数约是( )。 2、在计算4.9÷(8.2 - 4.7)时,应先算( )法,再算( )法,计算结果是( )。 3、6.4÷0.004的商的最高位是在( )位上。 4、9.6654保留两位小数约等于( ),保留整数约等于( )。 5、0.444… 记作( ), 2.13535… 记作( )。 6、计算小数除法时,商的小数点一定要与( )的小数点对齐。 7、 除数是一位小数的除法,计算时除数和被除数同时扩大( )倍。 8、25÷36的商用循环小数的简写形式表示是( ),保留两位小数约是( )。 9、在○里填上“>”、“<”、或“=” 2.4÷1.2○2.4 0.35÷0.99○0.35 0÷9.9○9.9 10、把一个数的小数点向右移动两位后,得到的数比原来大201,原来的数是( )。 11、在5.454,5.,5.4,5.,5.这五个数中,最大的数是( ),最小的数是( )。 12、在( )里填上适当的数。 14.4÷0.45=( )÷45 2.58÷0.12= ( ) ÷12 22÷8.8 = ( )÷88 9.12÷0.08= ( )÷8 二、判断题。(对的在括号里打“√”,错的打“×”。 )(10分) 1、在除数中 ,除不尽时商一定是循环小数。 ( ) 2、0.25÷0.12的商一定小于0.25。 ( ) 3、1÷7的商是循环小数。 ( ) 4、一个小数保留一位小数一定比保留两位小数小。 ( ) 5、1.47÷1.2的商是1.2,余数是3。 ( ) 三、选择题。(把正确的答案的序号填在括号里。)(10分) 1、在除法算式中,0不能做( )。 A、除数 B、商 C、被除数 2、下列各数是循环小数的是( ) A、0.151515 B、0.1515……0. C、511512 3、除数大于1时,商( )被除数。 A、大于 B、小于 C、等于 4、3.6与2.4的和除0.6,商是多少?列式正确的是( )。 A、3.6+2.4÷0.6 B、(3.6+2.4)÷0.6 C、0.6÷(3.6+2.4) 5、下列算式中,与7.2÷0.36相等的式子是( )。 A、720÷36 B、72÷3.6 C、7.2÷0.036 四、计算题。34分 1、口算。(10分) 10÷4= 12.9÷0.3= 1.3÷0.13= 0.6÷1.2= 0.3÷2= 0.32÷0.04= 2.64÷1.1 = 3.6÷0.4= 3.98÷1.0= 1.98÷0.78= 2、竖式计算。(12分)带*的要验算。 70÷5.6 = *42÷12= 126.1÷50.44= 15.12÷4.5= 176.4÷0.63= *9.744÷4.8= 3、脱式计算。(12分) 0.2×0.6×0.5×4 (7.5-2.3×0.4)÷0.01 3.64÷5.2×23.8 178.8÷(26.4-5.6) 五、应用题。(1-3题每小题4分,4、5题每小题5分,共22分) 1、张阿姨做的一套童装用布2.2m,50m最多可以做多少套这样的童装? 2、服装厂购买一批布,原来做一件婴儿衣服需要0.8米,可以做720个。后来改进技术每件节约用布0.2米,这批布现在可以做多少个? 3、张华带了20元去超市买圆珠笔,毎枝笔2.5元,她一共可以买多少枝? 4、小明的爸爸要去欧洲旅游,准备拿6000元人民币去换欧元。你知道这些钱大约可以换多少欧元吗?(1欧元兑换人民币8.19元) 5、 用一根铁丝正好折成一个长13.2cm,宽9.6cm的长方形,如果把这根铁丝拉直,再折成一个等边三角形,这个等边三角形的边长是多少厘米? 第一单元:小数除法 姓名: 得分: 一、 填一填(24分) 1、90分=( )小时 3小时39分=( )小时 2、 0.12÷0.3=( )÷3 0.672÷0.28=( )÷( ) 3、7.0306306……用循环小数的简便记法写作( ),保留三位小数 是( )。 4、在圆圈里填上“>”、“<”或“=”号。 3÷5○0.6 3.78○3.78÷0.25 2.08÷1.6( )20.8÷16 5、牛奶5角一袋,1元5角可以买( )袋,买7袋需要( )元。 6、一个正方形的周长是10分米,它的面积是( )平方分米。 7、根据1.8÷0.9=2,写出一道乘法算式和一道除法算式。 乘法算式:( ),除法算式:( )。 8、把6.35、6.35、6.305、6.3、6.3按照从小到大的顺序排列 ( )。 9、4 ×( )=134 ( )÷ 8=10.4 10、 一个三位小数精确到百分位取近似值是3.80,这个三位小数最小可能是( ),最大可能是( )。 11、3.47÷0.62,商是5.5 时,余数是( )。 12、给算式8.08÷4+5×0.6添上小括号,使它们符合下面的运算顺序。 ① 除→加→乘 算式:( ); ② 加→除→乘 算式:( )。 二、 选择题。(把正确答案的序号填在括号里)(5分) 1、与4.83÷0.7的商相等的式子是( )。 A.483÷7 B.48.3÷7 C.0.483÷7 2、两个数相除商是0.42,把被除数和除数同时扩大10倍,商是( )。 A. 0.42 B.4.2 C.42 3、2.345.....的小数部分第50位上的数字是( )。 A. 3 B.4 C.5 4、一根18米长的绳子,对折再对折后,每段长是( )。 A.9米 B.6米 C.4.5米 5、下面除法算式中,A表示大于0的数,商最大的算式是 ( )。 (1)A÷1.5 (2)A÷0.5 (3)A÷0.9 三、判断题。(对的打上“√”,错的打上“×”)(5分) 1、把一个小数精确到百分位,也就是保留两位小数。( ) 2、小数除以小数,商一定是小数。 ( ) 3、每套西服用布2.8米,30米布可以做11套这样的西服。 ( ) 4、一堆石子60吨,一辆卡车最多能装4.5吨,运完这堆石子需要13趟。( ) 5、两个数相除的商是7.2,如果被除数不变,除数扩大9倍,那么商是0.8。( 四、计算题:(共36分) 1、 直接写得数(6分) 0.3+0.25= 0.3-0.25= 0.3×0.25= 0.3÷0.25= 12.4÷0.4= 4.32 ×0.1= 8.2÷0.82= 7÷3.5= 1 ÷3= 2×( )=0.4 ( )×1.6=4.8 2-2÷4= 2、 用竖式计。(15分) 48.3÷0.35 8.64÷24 4.82×0.56 0.612÷1.8 0.574÷0.28 3、选择自己喜欢的方法,计算下面各题。(15分) 12.5÷2.5÷0.4 2.6×1.9÷2.6×1.9 (7.7+1.54)÷0.7 10.8÷[(4.62-1.92)×4] 2.6×(2.139÷9.3×6.2) 五、 解决实际问题(30分) 1、一辆汽车2. 5小时行136. 5千米,照这样计算,8小时可行多少千米? 2、一只河马的体重是5.1吨,是一头水牛体重的15倍。这只河马比这头水牛重多少吨? 3、妈妈在菜市场买了1.5千克带鱼,交给售货员11元钱后,找回0.95元。每千克带鱼多少元? 4、一间教室长8.6米,宽4.5米,用每块0.2平方米的方砖铺地,需要多少块? 5、 两种规格的牙膏的售价情况如下:如果买3支小牙膏,售价是8.7元;如果买4支小牙膏,售价是10.8元。购买哪种牙膏比较合算? 6、小红和小丽住在同一幢楼的同一个单元,小红家住在四楼,小丽家住在七楼,这一次她们俩以同样的速度回家,小红用了0.9分,小丽应该用多少秒? 附加题:1、 工程队修一条公路,原计划每天修路1.65千米,20天可以完成。实际只用了15天,实际平均每天多修路多少千米?(10分) 2、甲、乙两人同时从两地相对出发,甲每分钟行60米,乙每分钟行80米,经过40分钟后,两人还相距360米。(10分) 60 × 40 表示:( );80 × 40 表示:( ); (60+80)×40 表示:( ); (60+80)×40+360 表示:( ); 第二单元、倍数与因数 (一) 自然数、整数 1、自然数的概念:用以计量事物的件数或表示事物次序的数.即用数码0,1,2,3,4,……所表示的数 .表示物体个数的数叫自然数,自然数由0开始(包括0),一个接一个,组成一个无穷的集体. 2、整数的概念:像-2,-1,0,1,2这样的数称为整数.(整数是表示物体个数的数,0表示有0个物体) 3、最小的自然数是( ),( )最大的自然数。 4、我们只在自然数的范围内研究因数和倍 (二)因数、倍数 如果a×b=c(a、b、c是非零自然数),那么a、b是c的因数,c是a、b的倍数。因数和倍数是相互依存的。 例题: 1、3×9=27,27是______和______倍数,______和______是27的因数 2、如果a、b、c是三个不等于零的自然数,那么在a÷b=c中,( )和( )是( )的因数,( )是( )和( )的倍数。 (三)因数、倍数的性质 1、一个数的倍数的个数是无限的。一个数最小的倍数是它本身,没有最大的倍数。 2、一个数的因数的个数是有限的。一个数最小的因数是1,最大的因数是它本身。 (四)找因数的方法(注意有序思考,以防遗漏) 列乘法算式:例120=1×120=2×60=3×40=4×30=5×24=6×20=8×15=10×12(有序思考,以防遗漏) 列除法算式:用这个数除以非零自然数,商是整数而没有余数,除数和商都是这个数的因数。 ★一个数的因数的应用 把48块月饼装在盒子里,每个盒子装得同样多,有几种装法?每种装法各需要几个盒子?如果有47块月饼呢? 48=1×48=2×24=3×16=4×12=6×8 47=1×47 答;48块月饼有10种装法。每盒1块需要48个盒子,每盒2块需要24个盒子,每盒3块需要16个盒子,每盒4块需要12个盒子,每盒6块需要8个盒子, 每盒8块需要6个盒子,每盒12块需要4个盒子,每盒16块需要3个盒子,每盒24块需要2个盒子,每盒48块需要1个盒子。 47块月饼有2种装法:每盒1块需要47个盒子,每盒47块需要1个盒子。 练习: 1、100以内16的倍数有( ),其中最小的倍数是( )。 16的全部因数有( ),其中最小的因数是( ),最大的因数是( )。 2、一个数既是16的倍数,又是16的因数,这个数是( )。 16=( )×( )=( )×( )=( )×( ) 3、 一个数最小的一个因数是______,最大的因数是______.最小的倍数是______,这个数的倍数的个数是无限的. 4、 48名学生排队,要求每行的人数相同,可以排成几行?有几种排法?(每行最少2人) (五)2.3.5倍数的特征 2的倍数的特征:个位上的数字是0,2,4,6,8。 5的倍数的特征:个位上的数字是0或5。 3的倍数的特征:各个数位上的数字之和能被3整除。 9的倍数的特征:各个数位上的数字之和能被9整除。 练习: 1、在下面的横线里填上一个适当的数字. (1)既是2的倍数,又是3的倍数. 47______2 (2)既有因数3,又有因数5. 4______1______ (3)既是2的倍数,又是5的倍数. 529______ (4)同时是2、3、5的倍数. 7______ (5)同时是3、5的倍数 12______5 (6)有因数2,同时又是3的倍数. 3______8. 2、判断对错 (1)一个数既是2的倍数,又是5的倍数,这个数的个位一定是0.______. (2)在小于20的自然数中,既是2的倍数又是3的倍数的数有3个.______ (3)一个三位数各个数位上的数字都相同,这个数一定是3的倍数.______. (4)15的倍数一定也是3的倍数______ (5)3的倍数一定是奇数______ 3、用0、5、8、4组成三位数: (1)这个三位数有因数2:______ (2)这个三位数有因数5:______ (3)这个三位数有因数3:______ (4)这个三位数既有因数2,又有因数5:______ (5)这个三位数既有因数2,又有因数3:______ (6)这个三位数既有因数2和5,又有因数3:______. 4、既有因数2,又有因数3的最小数是( );既有因数2,又有因数5的最小的数是( ),既有因数3,又有因数5的最小数是( )。 5、商店运来45个柚子,如果每2个装一袋,能正好装完吗?如果每5个装一袋,能正好装完吗?如果每3个装一袋,能正好装完吗?为什么? (六)偶数:在自然数中,能被2整除的数,叫做偶数; 奇数: 不能被2整除的数是奇数。 奇数偶数性质: 偶数±偶数=偶数 奇数±奇数=偶数 偶数±奇数=奇数 奇数×奇数=奇数 偶数×偶数=偶数 奇数×偶数=偶数 练习: 1、选出两张数字卡片,按要求组成一个数. 3 0 4 5 (1) 奇数:______ (2)偶数:______ (3)5的倍数:______ (4)3的倍数:______ (5)既是2的倍数,又是3的倍数:______ (6)同时是2、3、5的倍数:______. 2、判断对错 (1)圆圆说:“所有的自然数不是奇数就是偶数.”______. (2)一个自然数不是奇数就是偶数,所以所有的偶数都是合数,所有的奇数都是质数.______. (3)两个奇数的积可能是奇数,也可能是偶数.______. (4)1既是奇数也是质数.______ 3、 写出相邻的三个奇数 4、 写出相邻的三个偶数 5、 (1)有5个连续自然数之和是135,这5个连续自然数是______. 6、 (2)有5个连续奇数之和是135,这5个连续奇数是______. 7、 晚上,小明正开着灯在吃晚饭,顽皮的弟弟按了15下开关,这时灯是______着的,如果再按50下,这时灯是______着的.(填“开”或“关”) 8、 把一张卡片正面朝上放在桌上,翻动20次仍正面朝上.______. (七)质数、合数 1、一个数只有1和它本身两个因数,这个数叫作质数。 2、一个数除了1和它本身外还有别的因数,这个数叫作合数。 3、判断一个数是质数还是合数,主要看这个数的因数的个数。只有两个因数的数是质数;有两个以上因数的数是合数。 4、1既不是质数也不是合数。最小的质数是( ),最小的合数是( )。 例题: 1、20以内的全部质数有( ) 2、 最小的自然数是( ),最小的奇数是( ),最小的偶数是( ),既是偶数又是质数的数是( ),最小的质数是( ),最小的合数是( ),( )既不是质数也不是合数。 3、 在括号里填上合适的质数 8=( )+( ) 24=( )+( ) 20=( )+( ) 28=( )+( ) 4、分一分 在17、22、29、7、37、87、93、96、41、58、61、14、57、19中 奇数:______ 偶数:______ 质数:______ 合数:______. 5、王老师的QQ号码是一个六位数. 第一位数:既是偶数又是质数. 第二位数:是最小的自然数. 第三位数:是4的倍数,又是4的因数. 第四位数:既是2的倍数又是3的倍数. 第五位数:是奇数又是合数. 第六位数:既是质数,又是奇数,并且是12的因数.你知道王老师的QQ号码是多少吗? 第二单元测试题 班别: 姓名: 一、 口算(10分) ①2.5×4÷2.5×4 ②1.6÷2.5÷4 ③3.5÷0.7 ④4.2+6.8 ⑤1.8÷0.9 ⑥10× 4.9 ⑦1.02÷0.51 ⑧7.5÷2.5 ⑨12.5×80 ⑩11.8-2.8 二、填空(28分,每空1分) 1、在1、-5、1.3、2、8、13、、-2这些数中,自然数有( ),整数有( ),质数有( ),合数有( ),奇数有( ),偶数有( )。 2、9是27的( ),又是3的( )。 3、一个数既是42的因数,又是3的倍数,这个数可以是( )。 4、15的最小因数是( ),最大因数是( )。 5.在1~20的质数中,( )是偶数,( )是奇数。 6.要使四位数105□,能同时是2和3倍数,□里应填数字( )。 7.在435后面写出三个连续的偶数是( ),( ),( )。 8.24所有的因数有( ),在这些因数中: 奇数有( ),合数有( ), 质数有( ),偶数有( )。 9.在自然数1~20中,哪些数符合下列条件: (1)既是奇数又是合数( )。 (2)既是偶数又是质数( )。 10.两个都是质数的连续自然数是( )和( )。 11.一个两位质数,如果调换个位和十位的数字,还是一个质数,这个数是( )。 12.电灯开始是灭的,按1次开关灯亮,按2次开关灯灭……。按26次开关灯是( )。 三、判断题(16分) 1、所有的质数都是奇数。 ( ) 2、最小的质数是1,最小的合数是4。 ( ) 3、相邻的两个自然数,一个是奇数,一个是偶数。 ( ) 4、一个数的倍数一定比这个数的因数大。 ( ) 5、 同时是2和5的倍数的数个位上一定是0。 ( ) 6、因为6÷12=0.5,所以6是0.5的倍数。 ( ) 7、一个数最大的因数和最小的倍数相等。 ( ) 8、一个自然数不是质数就是合数。 ( ) 四、选择题(10分) 1.如果a表示自然数,那么偶数可以表示为( )。 A.a+2 B.2a C.a-1 D.2a-1 2.用0,3,5,7四个数字,组成最小的奇数是( )。 A.7035 B.3057 C.3570 D.3075 3.m是合数,m有( )个因数。 A.2 B.3 C.至少3 D.无数 4.一个两位数,个位上的数既是奇数又是合数,十位上的数既是偶数又是质数,这个数是( )。 A.24 B.42 C.29 D.92 5.最小的质数与最小的合数的积是( )。 A.2 B.4 C.6 D.8 6.24的因数有( )个。 A.8 B.7 C.6 D.5 7.正方形的边长是质数,它的面积一定是( )。 A.奇数 B.偶数 C.合数 D.质数 8.已知两个质数的积是21,这两个质数的和是( )。 A.9 B.10 C.11 D.12 9.一个两位数是5的倍数,两个数位上数字和是6,这样的两位数共有( )个。 A.1 B.2 C.3 D.4 10.要在43□2中的□里填上一个数字,使这个四位数能被3整除,有( )种填法。 A.1 B.2 C.3 D. 4 五、基本技能(20分) (一)上边哪些数是下边哪些数的倍数? 用线连一连。(8分) 36 12 45 72 34 57 22 52 8 5 4 6 19 17 13 11 (二)把下列数按要求填入圈内(6分) 18 35 68 40 56 25 95 100 26 19 204 108 5的倍数 2的倍数 (三)用质数填空 (6分) 18=( )×( )×( ) 30=( )×( )×( ) 20=( )+( ) 25=( )+( )+( ) 24=( )+ ( ) 21 = ( ) + ( ) 六、实际应用(16分)(3题6点,其余题5分) 1.王老师把五年一班的学生分成小组来植树,按4人一组,6人一组,都能正好分完,五年一班有多少人?(班级人数在40~50之间) 2.已知两个质数的和是43,这两个质数的积是多少? 3.从3、6、9、0这四个数中,任意选出三个数字按要求组成三位数。 (1)是2的倍数。(写出3个) (2)是3的倍数。(写出3个) ( 3)是5的倍数。(写出3个) 最大公约数与最小公倍数(一) 一、基本概念知识 1.公约数和最大公约数 ①如果一个自然数a能被自然数b整除,那么称a为b的倍数,b为a的约数。 ②如果一个自然数同时是若干个自然数的约数,那么称这个自然数是这若干个自然数的公约数。在所有公约数中最大的一个公约数,称为这若干个自然数的最大公约数。 例如:12的约数有:1,2,3,4,6,12; 18的约数有:1,2,3,6,9,18。 自然数的最大公约数通常用符号()表示,例如,12和18的公约数有:1,2,3,6.其中6是12和18的最大公约数,记作(12,18)=6。 (8,12)=4,(6,9,15)=3。 2.公倍数和最小公倍数 ③如果一个自然数同时是若干个自然数的倍数,那么称这个自然数是这若干个自然数的公倍数。在所有公倍数中最小的一个公倍数,称为这若干个自然数的最小公倍数。 例如:12的倍数有:12,24,36,48,60,72,84,… 18的倍数有:18,36,54,72,90,… 自然数的最小公倍数通常用符号[]表示,例如12和18的公倍数有:36,72,….其中36是12和18的最小公倍数,记作[12,18]=36。 [8,12]=24,[6,9,15]=90。 3.互质数 如果两个数的最大公约数是1,那么这两个数叫做互质数。 常用的求最大公约数和最小公倍数的方法是分解质因数法和短除法。 用短除法求若干个数的最大公约数与最小公倍数的区别: 求个数的最大公约数: (1) 必须每次都用个数的公约数去除; (2) 一直除到个数的商互质(但不一定两两互质); (3) 个数的最大公约数即为短除式中所有除数的乘积。 求个数的最小公倍数: (1) 必须先用(如果有)个数的公约数去除,除到个数没有除去1以外的公约数后,在用个数的公约数去除,除到个数没有除1以外的公约数后,再用个数的公约数去除,如此继续下去,为保证这一条,每次所用的除数均可选质数; (2) 只要有两个数(被除数)能被同一数整除,就要继续除,一定要除到个数的商两两互质为止; (3) 个数的最小公倍数即为短除式中,所有除数和最后两两互质的商的乘积。 例1 用60元钱可以买一级茶叶144克,或买二级茶叶180克,或买三级茶叶240克。现将这三种茶叶分别按整克数装袋,要求每袋的价格都相等,那么每袋的价格最低是多少元钱? 分析与解: 因为144克一级茶叶、180克二级茶叶、240克三级茶叶都是60元,分装后每袋的价格相等,所以144克一级茶叶、180克二级茶叶、240克三级茶 叶,分装的袋数应相同,即分装的袋数应是144,180,240的公约数。题目要求每袋的价格尽量低,所以分装的袋数应尽量多,应是 144,180,240的最大公约数。是144,180,240的最大公约数。 所以(144,180,240)=2×2×3=12,即每60元的茶叶分装成12袋,每袋的价格最低是60÷12=5(元)。 例2 用自然数a去除498,450,414,得到相同的余数,a最大是多少? 分析与解:因为498,450,414除以a所得的余数相同,所以它们两两之差的公约数应能被a整除。 498-450=48,450-414=36,498-414=84。所求数是(48,36,84)=12。 例3 现有三个自然数,它们的和是1111,这样的三个自然数的公约数中,最大的可以是多少? 分析与解: 只知道三个自然数的和,不知道三个自然数具体是几,似乎无法求最大公约数。只能从唯一的条件“它们的和是1111”入手分析。三个数的和是1111,它们 的公约数一定是1111的约数。因为1111=101×11,它的约数只能是1,11,101和1111,由于三个自然数的和是1111,所以三个自然数 都小于1111,1111不可能是三个自然数的公约数,而101是可能的,比如取三个数为101,101和909。所以所求数是101。 例4 在一个30×24的方格纸上画一条对角线(见下页上图),这条对角线除两个端点外,共经过多少个格点(横线与竖线的交叉点)? 分析与解:(30,24)=6,说明如果将方格纸横、竖都分成6份,即分成6×6个相同的矩形,那么每个矩形是由(30÷6)×(24÷6)=5×4(个) 小方格组成。在6×6的简化图中,对角线也是它所经过的每一个矩形的对角线,所以经过5个格点(见左下图)。在对角线所经过的每一个矩形的5×4个小方格中,对角线不经过任何格点(见右下图)。 所以,对角线共经过格点(30,24)-1=5(个)。 例5 甲、乙、丙三人绕操场竞走,他们走一圈分别需要1分、1分15秒和1分30秒。三人同时从起点出发,最少需多长时间才能再次在起点相会? 分析与解:甲、乙、丙走一圈分别需60秒、75秒和90秒,因为要在起点相会,即三人都要走整圈数,所以需要的时间应是60,75,90的公倍数。所求时间为[60,75,90]=900(秒)=15(分)。 例6 爷爷对小明说:“我现在的年龄是你的7倍,过几年是你的6倍,再过若干年就分别是你的5倍、4倍、3倍、2倍。”你知道爷爷和小明现在的年龄吗? 分析与解:爷爷和小明的年龄随着时间的推移都在变化,但他们的年龄差是保持不变的。爷爷的年龄现在是小明的7倍,说明他们的年龄差是6的倍数;同理,他们的年龄差也是5,4,3,2,1的倍数。由此推知,他们的年龄差是6,5,4,3,2的公倍数。 [6,5,4,3,2]=60, 爷爷和小明的年龄差是60的整数倍。考虑到年龄的实际情况,爷爷与小明的年龄差应是60岁。所以现在 小明的年龄=60÷(7-1)=10(岁), 爷爷的年龄=10×7=70(岁)。 二、随堂练习 最大公约数与最小公倍数(二) 摘要:这一讲主要讲最大公约数与最小公倍数的关系,并对最大公约数与最小公倍数的概念加以推广。 在求18与12的最大公约数与最小公倍数时,由短除- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 北师大 年级 数学 课外 辅导 讲义 讲课 讲稿
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【丰****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【丰****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【丰****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【丰****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文