高中数学基础知识汇总讲解学习.doc
《高中数学基础知识汇总讲解学习.doc》由会员分享,可在线阅读,更多相关《高中数学基础知识汇总讲解学习.doc(14页珍藏版)》请在咨信网上搜索。
高中数学基础知识汇总 精品文档 高中数学基础知识汇总 第一章 集合与简易逻辑: 一.集合 1、 集合的有关概念和运算 (1)集合的特性:确定性、互异性和无序性; (2)元素a和集合A之间的关系:a∈A,或aA; 2、子集定义:A中的任何元素都属于B,则A叫B的子集 ;记作:AB, 注意:AB时,A有两种情况:A=φ与A≠φ 3、真子集定义:A是B的子集 ,且B中至少有一个元素不属于A;记作:; 4、补集定义:; 5、交集与并集 交集:;并集: 6、集合中元素的个数的计算: 若集合中有个元素,则集合的所有不同的子集个数为_________,所有真子集的个数是__________,所有非空真子集的个数是 。 二.简易逻辑: 1.复合命题: 三种形式:p或q、p且q、非p; 判断复合命题真假: 2.真值表:p或q,同假为假,否则为真;p且q,同真为真;非p,真假相反。 原命题 若p则q 逆命题 若q则p 否命题 若p则q 逆否命题 若q则p 否 逆 为 互 互 否 互逆 互逆 互 否 互 为 逆 否 3.四种命题及其关系: 原命题:若p则q; 逆命题:若q则p; 否命题:若p则q; 逆否命题:若q则p; 互为逆否的两个命题是等价的。 原命题与它的逆否命题是等价命题。 4.充分条件与必要条件: 若,则p叫q的充分条件; 若,则p叫q的必要条件; 若,则p叫q的充要条件; 第二章 函数 一. 函数 1、映射:按照某种对应法则f ,集合A中的任何一个元素,在B中都有唯一确定的元素和它对应, 记作f:A→B,若,且元素a和元素b对应,那么b叫a的象,a叫b的原象。 2、函数:(1)、定义:设A,B是非空数集,若按某种确定的对应关系f,对于集合A中的任意一个数x,集合B中都有唯一确定的数f(x)和它对应,就称f:A→B为集合A到集合B的一个函数,记作y=f(x), (2)、函数的三要素:定义域,值域,对应法则; 3、求定义域的一般方法:①整式:全体实数R;②分式:分母,0次幂:底数; ③偶次根式:被开方式,例:;④对数:真数,例: 4、求值域的一般方法: ①图象观察法:;②单调函数法: ③二次函数配方法:, ④“一次”分式反函数法:;⑥换元法: 5、求函数解析式f(x)的一般方法: ①待定系数法:一次函数f(x),且满足,求f(x) ②配凑法:求f(x);③换元法:,求f(x) 6、函数的单调性: (1)定义:区间D上任意两个值,若时有,称为D上增函数; 若时有,称为D上减函数。(一致为增,不同为减) (2)区间D叫函数的单调区间,单调区间定义域; (3)复合函数的单调性:即同增异减; 7.奇偶性: 定义:注意区间是否关于原点对称,比较f(x) 与f(-x)的关系。 f(x) -f(-x)=0 f(x) =f(-x) f(x)为偶函数; f(x)+f(-x)=0 f(x) =-f(-x) f(x)为奇函数。 8.周期性: 定义:若函数f(x)对定义域内的任意x满足:f(x+T)=f(x),则T为函数f(x)的周期。 9.函数图像变换: (1)平移变换 y=f(x)→y=f(x+a),y=f(x)+b;(2)法则:加左减右,加上减下 (3)注意:(ⅰ)有系数,要先提取系数。如:把函数y=f(2x)经过 平移得到函数y=f(2x+4)的图象。(ⅱ)会结合向量的平移,理解按照向量(m,n)平移的意义。 10.函数的图象和它的反函数的图象关于直线对称;点(a,b)关于直线的对称点为(b,a); 二、指对运算: 1. 指数及其运算性质:当n为奇数时,;当n为偶数时, 2.分数指数幂:正分数指数幂:;负分数指数幂: 3.对数及其运算性质: (1)定义:如果,以10为底叫常用对数,记为lgN,以e=2.7182828…为底叫自然对数,记为lnN (2)性质:①负数和零没有对数,②1的对数等于0:,③底的对数等于1:,④积的对数:, 商的对数:, 幂的对数:, 方根的对数:, 三.指数函数和对数函数的图象性质 函数 指数函数 对数函数 定义 1 y x y=ax O () () 图象 a>1 0<a<1 a>1 O 1 y x y=logax 0<a<1 1 y=ax x y O O 1 y=logax x y 性 质 定义域 (-∞,+∞) (-∞,+∞) (0,+∞) (0,+∞) 值域 (0,+∞) (-∞,+∞) 单调性 在(-∞,+∞) 上是增函数 在(-∞,+∞) 上是减函数 在(0,+∞) 上是增函数 在(0,+∞) 上是减函数 函数值变化 图 象 定 点 过定点(0,1) 过定点(1,0) 图象 特征 图象在x轴上方 图象在y轴右边 图象 关系 的图象与的图象关于直线对称 第三章 数列 一.数列:(1)前n项和:; (2)前n项和与通项的关系: 二.等差数列 : 1.定义:。2.通项公式: (关于n的一次函数), 3.前n项和:(1). (2). (即Sn = An2+Bn) 4.等差中项: 或 5.等差数列的主要性质: (1)等差数列,若,则。 也就是:,如图所示: (2)若数列是等差数列,是其前n项的和,,则,,成等差数列。如下图所示: 三.等比数列: 1.定义:;2.通项公式:(其中:首项是,公比是) 3.前n项和]:(推导方法:乘公比,错位相减) 说明:①; ; 当时为常数列,。 4.等比中项:,即(或,等比中项有两个) 5.等比数列的主要性质: (1)等比数列,若,则 也就是:。如图所示: (2)若数列是等比数列,是前n项的和,,则,,成等比数列。 如下图所示: 四.求数列的前n项和的常用方法:分析通项,寻求解法 1.公式法:等差等比数列 ;2.分部求和法:如an=2n+3n 3.裂项相消法:如an=;4.错位相减法:“差比之积”的数列:如an=(2n-1)2n 第四章 三角函数 1、角:与终边相同的角的集合为{} 2、弧度制:(1)定义:等于半径的弧所对的圆心角叫做1弧度的角,用弧度做单位叫弧度制。 (2)度数与弧度数的换算:弧度,1弧度 (3)弧长公式: (是角的弧度数) 扇形面积: P(x,y) r x 0 y 3、三角函数 定义:(如图) 4、同角三角函数基本关系式 (1)平方关系: (2)商数关系: (3)倒数关系: 5、诱导公式(理解记忆方法:奇变偶不变,符号看象限) 公式一: 公式二: 公式三: 公式四: 公式五: 6、两角和与差的正弦、余弦、正切 : : : : : : 7、辅助角公式: (其中称为辅助角,的终边过点,) 8、二倍角公式:(1)、: (2)、降次公式: : : 9、三角函数的图象性质 (1)函数的周期性: ①定义:对于函数f(x),若存在一个非零常数T,当x取定义域内的每一个值时,都有:f(x+T)= f(x),那么函数f(x)叫周期函数,非零常数T叫这个函数的周期; ②如果函数f(x)的所有周期中存在一个最小的正数,这个最小的正数叫f(x)的最小正周期。 (2)函数的奇偶性: ①定义:对于函数f(x)的定义域内的任意一个x,都有:f(-x)= - f(x),则称f(x)是奇函数,f(-x)= f(x),则称f(x)是偶函数 ②奇偶函数的定义域关于原点对称;奇函数的图象关于原点对称,偶函数的图象关于y轴对称; (3)正弦、余弦、正切函数的性质() 函数 定义域 值域 周期性 奇偶性 递增区间 递减区间 [-1,1] 奇函数 [-1,1] 偶函数 (-∞,+∞) 奇函数 图象的五个关键点:(0,0),(,1),(,0),(,-1),(,0); 0 1 -1 x y 图象的五个关键点:(0,1),(,0),(,-1),(,0),(,1); 0 1 -1 x y o x y (4)、函数的相关概念: 函数 定义域 值域 振幅 周期 频率 相位 初相 图象 [-A,A] A 五点法 当A时,图象上各点的纵坐标伸长到原来的A倍 当A时,图象上各点的纵坐标缩短到原来的A倍 的图象与的关系: 当时,图象上各点的纵坐标缩短到原来的倍 当时,图象上各点的纵坐标伸长到原来的倍 ①振幅变换: 当时,图象上的各点向左平移个单位倍 当时,图象上的各点向右平移个单位倍 ②周期变换: ③相位变换: 第五章 平面向量 1.向量的有关概念:向量的定义、向量的模、零向量、单位向量、相反向量、共线向量、相等向量。 2.向量的运算:(1)、向量的加减法: 三角形法则 平行四边形法则 向量的加法 首位连结 向量的减法 指向被减向量 (2)实数与向量的积:①定义:实数与向量的积是一个向量,记作:; ②它的长度:; ③:它的方向:当,与的方向相同;当,与的方向相反;当时,=; 3.平面向量基本定理:如果是同一平面内的两个不共线的向量,那么对平面内的任一向量,有且只有一对实数,使; 4.平面向量的坐标运算: (1)坐标运算:设,则 设A、B两点的坐标分别为(x1,y1),(x2,y2),则. (2)实数与向量的积的运算律: 设,则λ, (3)平面向量的数量积: ①定义: , . ①平面向量的数量积的几何意义:向量的长度||与在的方向上的投影||的乘积; ③、坐标运算:设,则 ; 向量的模||:;模|| ④、设是向量的夹角,则。 5、重要结论: (1)两个向量平行的充要条件: 设,则 (2)两个非零向量垂直的充要条件: 设 ,则 (3)两点的距离: (5)平移公式:如果点 P(x,y)按向量 平移至P′(x′,y′),则 6、解三角形: (1)三角形的面积公式: (2)正,余弦定理 ①正弦定理: ②余弦定理: 求角: 第六章不等式 一、不等式的基本性质: 1.特值法是判断不等式命题是否成立的一种方法,此法尤其适用于不成立的命题。 2.中间值比较法:先把要比较的代数式与“0”比,与“1”比,然后再比较它们的大小 二.均值不等式: 1.内容:两个数的算术平均数不小于它们的几何平均数。即:若,则(当且仅当时取等号) 2.基本变形:① ;②若,则 3.基本应用:求函数最值: 注意:①一正二定三取等;②积定和小,和定积大。 常用的方法为:拆、凑、平方;如:①函数的最小值 。 ②若正数满足,则的最小值 。 三、绝对值不等式:,注意:上述等号“=”成立的条件; 五、不等式的解法: 1.一元二次不等式的图解法:(二次函数、二次方程、二次不等式三者之间的关系) 判别式:△=b2-4ac x1 x2 x y O x1=x2 x y O x y O 二次函数 的图象 一元二次方程 的根 有两相异实数根 有两相等实数根 没有实数根 一元二次不等式 的解集 “>”取两边 R 一元二次不等式 的解集 “<”取中间 3.绝对值不等式的解法:(“>”取两边,“<”取中间) (1)当时,的解集是,的解集是 (2)当时,, 4.分式不等式的解法:通解变形为整式不等式; ⑴ ;(2) ; 5.高次不等式组的解法:数轴标根法。 第七章 直线和圆的方程 一、直线 1.直线的倾斜角和斜率 (1)直线的倾斜角α∈[0,π).(2)直线的斜率,即 (3)斜率公式:经过两点P1(x1,y1)、P2(x2,y2)的直线的斜率为 2.直线的方程 (1)点斜式 :y-y0=k(x-x0) (2)斜截式:y=kx+b (3)两点式: (4)截距式: (5)一般式 Ax+By+C=0 (A、B不同时为0). 3.两条直线的位置关系 (1)平行:当直线l1和l2有斜截式方程时,k1=k2且b1≠b2; (2)重合:当l1和l2有斜截式方程时,k1=k2且b1=b2; (3)相交:当l1,l2是斜截式方程时,k1≠k2 (4)垂直:设两条直线和的斜率分别为和,则有 一般式方程时,(优点:对斜率是否存在不讨论) (5)交点:求两直线交点,即解方程组 4.点到直线的距离:设点,直线到的距离为. 5.两条平行线间的距离公式:设两条平行直线,它们之间的距离为,则有. 6. 关于点对称和关于某直线对称:利用直线垂直,平行等解决 7.简单的线性规划----线性规划的三种类型: 1.截距型:形如z=ax+by, 把z看作是y轴上的截距,目标函数的最值就转化为y轴上的截距的最值。 2.斜率型:形如时,把z看作是动点与定点连线的斜率,目标函数的最值就转化为PQ连线斜率的最值。 3.距离型:形如时,可把z看作是动点与定点距离的平方,这样目标函数的最值就转化为PQ距离平方的最值。 二、曲线和方程:求曲线方程的步骤:①建系,设点;②列式;③代入④化简;⑤证明. 三、圆 1..圆的方程: (1)标准方程(x-a)2+(y-b)2=r2.(a,b)为圆心,r为半径. (2) 圆的一般方程: (.) (3)圆的参数方程:(为参数). 2.点和圆的位置关系:给定点及圆. ①在圆内;②在圆上 ③在圆外 3.直线和圆的位置关系: 设圆圆:; 直线:; 圆心到直线的距离. ①几何法:时,与相切;时,与相交;时,与相离. ② 代数法:方程组用代入法,得关于(或)的一元二次方程,其判别式为,则:与相切;与相交;与相离. 注意:几何法优于代数法 4.求圆的切线方法 ①若已知切点(x0,y0)在圆上,则切线只有一条。利用相切条件求k值即可。 ②若已知切线过圆外一点(x0,y0),则设切线方程为y-y0=k(x-x0),再利用相切条件求k,这时必有两条切线,注意不要漏掉平行于y轴的切线. 5.圆与圆的位置关系:已知两圆圆心分别为O1、O2,半径分别为r1、r2,则 第八章 圆锥曲线 一.椭圆的定义标准方程及其几何性质 定义 平面内与两个定点、的距离的和等于常数(大于)的点的轨迹叫做椭圆。这两个定点叫做椭圆的焦点,两焦点的距离叫椭圆的焦距.若为椭圆上任意一点,则有. 方程 图像 a,b,c关系 焦点 范围 对称性 坐标轴是椭圆的对称轴,原点是对称中心. 顶点 长短轴 离心率 (0<e<1) 准线 二.双曲线的定义标准方程及其几何性质 定义 第一定义 平面内与两个定点、的距离的差的绝对值等于常数(小于)的点的轨迹叫做双曲线。这两个定点叫做双曲线的焦点,两焦点的距离叫双曲线的焦距. 第二定义 平面内与定点的距离和它到定直线:的距离比是常数()的轨迹叫双曲线.定点F是双曲线的一个焦点,定直线l是双曲线的一条准线,常数e双曲线的离心率 方程 图像 a,b,c关系 焦点 范围 对成性 坐标轴是椭圆的对称轴,原点是对称中心. 顶点 实轴 虚轴 离心率 (e>1) 准线 渐近线 () 三.抛物线定义标准方程及其简单几何性质 定义 平面内与一定点F和一条定直线L的距离相等的点的轨迹叫做抛物线.定点F叫做抛物线的焦点,定直线L叫做抛物线的准线. 标准方程 图形 焦点 准线 范围 对称轴 轴 轴 顶点 (0,0) 离心率 三. 直线和圆锥曲线的位置关系 1. 直线和椭圆的位置关系的判断方法 (1)代数法:直线l:Ax+By+C=0和圆锥曲线C:f(x,y)=0的位置关系可分为:相交、相切、相离. 设直线l:Ax+By+C=0,圆锥曲线C:f(x,y)=0 ; 由 消去y(或x)得: ax2+bx+c=0 (a≠0) ;令Δ=b2-4ac, 则Δ>0⇔相交;Δ=0⇔相切;Δ<0⇔相离. (2)几何法:求大致位置和满足条件的直线时可用,精确计算时不可用。 2.弦长的计算:弦长公式. 第九章 立体几何 1.平面的基本性质:三个公理及推论。 2.空间两条直线的位置关系:平行、相交、异面; 3.直线与平面 位置关系 (1)直线在平面内——有无数个公共点 。(2)直线和平面相交——有且只有一个公共点(3)直线和平面平行——没有公共点 直线和平面平行 判 定 定 理 性 质 定 理 直线与平面垂直 判 定 定 理 性 质 定 理 直线与平面所成的角 (1)平面的斜线和它在平面上的射影所成的锐角,叫做这条斜线与平面所成的角 (2)一条直线垂直于平面,定义这直线与平面所成的角是直角 (3)一条直线和平面平行,或在平面内,定义它和平面所成的角是00的角 三垂线定理 在平面内的一条直线,如果和这个平面的一条斜线的射影垂直,那么它和这条斜线垂直。 三垂线逆定理 在平面内的一条直线,如果和这个平面的一条斜线垂直,那么它和这条斜线的射影垂直。 4.平面与平面位置关系:平行、相交(垂直是相交的一种特殊情况) 空间两个平面 两个平面平行 判 定 性 质 (1)如果一个平面内有两条相交直线平行于另一个平面,那么这两个平面平行 (2)垂直于同一直线的两个平面平行 (1)两个平面平行,其中一个平面内的直线必平行于另一个平面 (2)如果两个平行平面同时和第三个平面相交,那么它们的交线平行 (3)一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面 相交的两平面 二面角:从一条直线出发的两个半平面所组成的图形叫做二面角,这条直线叫二面角的线,这两个半平面叫二面角的面 二面角的平面角:以二面角的棱上任一点为端点,在两个面内分另作垂直棱的两条射线,这两条射线所成的角叫二面角的平面角。平面角是直角的二面角叫做直二面角。 两平面垂直 判 定 性 质 如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直 (1)若二平面垂直,那么在一个平面内垂直于它们的交线的直线垂直于另一个平面 (2)如果两个平面垂直,那么经过第一个平面内一点垂直于第二个平面的直线,在第一个平面内 5. 常用证明方法: (1)判断线线平行的常用方法: ①a∥b,b∥c, a∥c;②a∥α,a β,α∩β=b a∥b ③a⊥α,b⊥α a∥b;④α∥β,α∩γ=a,β∩γ=b a∥b (2)判定线线垂直的常用方法. ①a⊥α,b α a⊥b; ②b∥c,a⊥c a⊥b ③a⊥α,b∥α a⊥b; ④三垂线定理及逆定理 (3)判定线面平行的常用方法: ①定义 ②a α,bα且a∥b a∥α.③α∥β,a β a∥β; (4)判定线面垂直的常用方法 ①c⊥a,c⊥b且a α,b α,a,b无公共点 c⊥α;②a∥b且a⊥α b⊥α ③α∥β且a⊥α a⊥β (5)判定面面平行的常用方法: ①a、b β,a∩b=A,若a∥α,b∥α α∥β ②a⊥α,α⊥β α∥β ③α∥β,β∥r α∥γ (6)判定面面垂直的常用方法. ①a⊥α,a β α⊥β ②α∥β,b⊥r β⊥r ③a⊥β,a∥α α⊥β 6.棱柱 (1)棱柱的定义、分类,直棱柱、正棱柱的性质;(2)长方体的性质。 (3)平行六面体→直平行六面体→长方体→正四棱柱→正方体这些几何体之间的联系和区别,以及它们的特有性质。 (4)S侧=各侧面的面积和;(5)V=Sh。 7.棱锥 1. 棱锥的定义、正棱锥的定义(底面是正多边形,顶点在底面上的射影是底面的中心) 2. 相关计算:S侧=各侧面的面积和 ,V=Sh 8.球的相关概念:(1)S球=4πR2 V球=πR3 (2)球面距离的概念 9.计算问题:计算步骤:一作、二证、三算 (1)异面直线所成的角 范围:0°<θ≤90° 方法:①平移法;②向量法. (2)直线与平面所成的角 范围:0°≤θ≤90° 方法:关键是作垂线,找射影. (3)二面角方法:①定义法;②射影面积法:S′=Scosθ三垂线法;③向量法. 其中二面角的平面角的作法 ①定义法:由二面角平面角的定义做出平面角; ②三垂线法:一般要求平面的垂线好找,一般在计算时要解一个直角三角形。 (4)两点之间的距离.(5)点到直线的距离. (6)点到平面的距离: (1)直接法,即直接由点作垂线,求垂线段的长.(2) 等体积法. (3) 向量法 (7)两条平行线间的距离. (8)两异面直线间的距离(1)定义法,即求公垂线段的长.(2)转化成求直线与平面的距离.(3)向量法 (9)平面的平行直线与平面之间的距离.(10)两个平行平面之间的距离. (11)球面距离 第十章 排列组合与二项式定理概率 一.排列组合 1.计数原理 ①分类原理:N=n1+n2+n3+…+nM (分类) ②分步原理:N=n1·n2·n3·…nM (分步) 2.排列(有序)与组合(无序) Anm=n(n-1)(n-2)(n-3)…(n-m+1)= Ann =n! Cnm = Cnm= Cnn-m Cnm+Cnm+1= Cn+1m+1 k•k!=(k+1)!-k! 三.排列、组合问题几大解法:总原则:先选后排,先分再排 1、多排问题直排法:把n个元素排成若干排的问题,若没其他的特殊要求,可用统一排成一排的方法来处理. 2、特殊元素优先法:对于特殊元素的排列组合问题,一般先考虑特殊元素,再考虑其他元素的安排。在操作时,针对实际问题,有时“元素优先”,有时“位置优先”。 3、相邻问题捆绑法:对于某些元素要求相邻排列的问题,可先将相邻元素捆绑成整体并看作一个元素再与其它元素进行排列,同时对相邻元素内部进行自排。 4、不相邻问题插空法:对于某几个元素不相邻的排列问题,可先将其他元素排好,再将不相邻的元素在已排好的元素之间及两端的空隙之间插入即可(有时候两端的空隙的插法是不符合题意的) 5、正难则反排除法(或淘汰法):对于含有否定词语“至多”,“至少”类的问题,从正面解决不容易,可以考虑从其反面来解决。即总体中把不符合要求的除去,应注意既不能多减也不能少减。 6、元素重复问题住店法(或映射法):解决“允许重复排列”的问题要注意区分两类元素:一类元素可重复,另一类元素不能重复。把不能重复的元素看着“客”,能重复的元素看着“店”,再利用分步计数原理直接求解的方法称为“住店法”。 四. 二项式定理: 1.(a+b)n=Cn0ax+Cn1an-1b1+ Cn2an-2b2+ Cn3an-3b3+…+ Cnran-rbr+…+ Cn n-1abn-1+ Cnnbn 特别地:(1+x)n=1+Cn1x+Cn2x2+…+Cnrxr+…+Cnnxn 2.通项为第r+1项: Tr+1= Cnran-rbr 作用:处理与指定项、特定项、常数项、有理项等有关问题。 3.主要性质和主要结论:对称性Cnm=Cnn-m 最大二项式系数在中间。(要注意n为奇数还是偶数,答案是中间一项还是中间两项) 所有二项式系数的和:Cn0+Cn1+Cn2+ Cn3+ Cn4+…+Cnr+…+Cnn=2n 奇数项二项式系数的和=偶数项而是系数的和 Cn0+Cn2+Cn4+ Cn6+ Cn8+…=Cn1+Cn3+Cn5+ Cn7+ Cn9+…=2n -1 五.概率1.必然事件: P(A)=1;不可能事件: P(A)=0;随机事件的定义: 0<P(A)<1。 2.等可能事件的概率:如果一次试验中可能出现的结果有年n个,且所有结果出现的可能性都相等,那么,每一个基本事件的概率都是,如果某个事件A包含的结果有m个,那么事件A的概率. 3.互斥事件:不可能同时发生的两个事件叫互斥事件. 如果事件A、B互斥,那么事件A+B发生(即A、B中有一个发生)的概率,等于事件A、B分别发生的概率和,即P(A+B)=P(A)+P(B); 推广:. 4.对立事件:两个事件必有一个发生的互斥事件叫对立事件.(A、B互斥,即事件A、B不可能同时发生)(A、B对立,即事件A、B不可能同时发生,但A、B中必然有一个发生。P(A)+ P(B)=1 5.相互独立独立事件:事件A(或B)是否发生对事件B(或A)发生的概率没有影响.这样的两个事件叫做相互独立事件. 如果两个相互独立事件同时发生的概率,等于每个事件发生的概率的积,即P(A·B)=P(A)·P(B). 推广:若事件相互独立,则. 6.独立重复事件:若n次重复试验中,每次试验结果的概率都不依赖于其他各次试验的结果,则称这n次试验是独立的. 如果在一次试验中某事件发生的概率为P,那么在n次独立重复试验中这个事件恰好发生k次的概率:。特殊:令k=0 得:在n次独立重复试验中,事件A没有发生的概率为Pn(0)=Cn0p0(1-p)n =(1-p)n令k=n得:在n次独立重复试验中,事件A全部发生的概率为Pn(n)=Cnnpn(1-p)0 =pn 收集于网络,如有侵权请联系管理员删除- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高中数学 基础知识 汇总 讲解 学习
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【a199****6536】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【a199****6536】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【a199****6536】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【a199****6536】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文