曲线积分省公共课一等奖全国赛课获奖课件.pptx
《曲线积分省公共课一等奖全国赛课获奖课件.pptx》由会员分享,可在线阅读,更多相关《曲线积分省公共课一等奖全国赛课获奖课件.pptx(83页珍藏版)》请在咨信网上搜索。
1、第六章积分学 定积分二重积分三重积分积分域 区间域 平面域 空间域 曲线积分曲线积分曲线域曲线域曲面域曲面域曲线积分曲线积分曲面积分曲面积分对弧长曲线积分对坐标曲线积分对面积曲面积分对坐标曲面积分曲面积分曲面积分曲线积分与曲面积分 第1页第一节一、对弧长曲线积分概念与性质一、对弧长曲线积分概念与性质二、对弧长曲线积分计算法二、对弧长曲线积分计算法机动 目录 上页 下页 返回 结束 对弧长曲线积分 第六章 第2页一、对弧长曲线积分概念与性质一、对弧长曲线积分概念与性质假设曲线形细长构件假设曲线形细长构件L在在xoy平面所占平面所占弧段为弧段为AB,其线密度为其线密度为(1)分小分小:在在A,B之
2、间依次插入之间依次插入n-1个分点个分点,计算此构件质量计算此构件质量m。1.1.引例引例:曲线形构件质量曲线形构件质量(2)取近似取近似(3求和求和(4)取极限取极限 A=A0,A1,Ak-1,Ak,An=B把把L分成分成n小段小段,其弧长仍用此符号表示。其弧长仍用此符号表示。第3页设 是平面中一条有限长光滑曲线,义在 上一个有界函数,存在,上对弧长曲线积分,在 上任意插入n-1个分点在sk上任取一点(k,k),k=1,2,n2.定义定义做和式则称此极限为函数在曲线或第一类曲线积分.记作称为被积函数,称为积分弧段.曲线形构件质量若极限是定A=A0,A1,Ak-1,Ak,An=B把L分成n小段
3、即分小、取点、作和、取极限第4页假如 L 是 空间中曲线弧,假如 L 是闭曲线,则记为则定义对弧长曲线积分为例 求解:第5页3.性质性质(k 为常数)(l 为曲线弧 长度)(5)对称性 若 关于y轴对称,1为y轴右边部分,则若 关于x轴对称,1为x轴上方部分,则(1)线性(2)线性(3)可加性第6页二、对弧长曲线积分计算法二、对弧长曲线积分计算法定理定理:且上连续函数,是定义在光滑曲线弧则曲线积分注:所以积分限必须满足第7页假如曲线 L 方程为则有假如方程为极坐标形式:则推广推广:设空间曲线弧参数方程为则计算方法计算方法:把曲线方程和弧长元素ds代入被积表示式,从小参数值到大参数值积分第10页
4、例例1.计算其中 L 是抛物线与点 B(1,1)之间一段弧.解解:上点 O(0,0)第11页1.曲线形构件质量 三、对弧长曲线积分应用三、对弧长曲线积分应用2.曲线形构件重心 形心 第12页3.曲线形构件转动惯量 第13页例例2.计算半径为 R,中心角为圆弧 L 对于它对称轴转动惯量I(设线密度=1).解解:建立坐标系如图,则 第14页例例3.计算其中L为双纽线解解:在极坐标系下它在第一象限部分为利用对称性,得第15页例例4.计算曲线积分 其中为螺旋一段弧.解解:线第16页例例5.计算其中为球面 被平面 所截圆周.解解:注:因为被积函数定义在曲线上,化简,然后再计算所以可先用方程把被积函数xy
5、zO第17页内容小结内容小结1.定义定义2.性质性质(l 曲线弧 长度)第22页3.计算计算 对光滑曲线弧 对光滑曲线弧 对光滑曲线弧作业:作业册作业:作业册P5254第23页第二节一、对坐标曲线积分概念一、对坐标曲线积分概念 与性质与性质二、二、对坐标曲线积分计算法对坐标曲线积分计算法 三、两类曲线积分之间联络三、两类曲线积分之间联络 机动 目录 上页 下页 返回 结束 对坐标曲线积分 第六章 第29页一、一、对坐标曲线积分概念与性质对坐标曲线积分概念与性质1.引例引例:变力沿曲线所作功.设一质点受以下变力作用在 xoy 平面内从点 A 沿光滑曲线弧 L 移动到点 B,求移“分小”“取近似”
6、“求和”“取极限”恒力沿直线所作功处理方法:动过程中变力所作功W.第30页1)“分小分小”.2)“取近似取近似”把L分成 n 个有向小弧段,有向小弧段近似代替,则有所做功为F 沿则用有向线段 上任取一点在3)“求和求和”4)“取极限取极限”令 为 n 个小弧段最大长度第31页2.定义定义.设 L 为xoy 平面内从 A 到B 有向曲线有向曲线弧弧,在 L 上沿从 A 到B 方向任意插入n-1存在,在有向曲线弧 L 上对坐标坐标x曲线积分曲线积分,则称此极限为函数或第二类曲线积分第二类曲线积分.在L 上有界把L分成n小段有向曲线个分点,在上任上任取一点令作和式若极限记为即第32页对 坐标y 曲线
7、积分.若记则 对坐标曲线积分可写作其中,L 称为积分弧段积分弧段 或 积分积分称为被积函数被积函数,积分曲线积分曲线.一样可定义所求量往往为对坐标 x,y曲线积分和.简记为若 L为x坐标轴上从A到B线段,则第33页若记所求量往往为对坐标 x,y,z曲线积分和.简记为类似定义三元函数在空间有向曲线 上对坐标曲线积分则可表示为第34页3.性质性质(1)可加性(2)方向性 定积分是第二类曲线积分特例.注注:对坐标曲线积分必须注意积分弧段方向方向!用L 表示 L 反向弧,则第35页二、对坐标曲线积分计算法二、对坐标曲线积分计算法定理定理:在有向光滑弧 L 上有定义且L 参数方程为则曲线积分连续,存在,
8、且有尤其是,假如 L 方程为则第36页对空间光滑曲线弧:类似有计算方法计算方法:把曲线方程和弧长元素dx,dy或 dz代入被积表示式,从起点参数值到终点参数值积分第38页例例1.计算其中L 为沿抛物线解法解法1 取 x 为参数,则解法解法2 取 y 为参数,则从点一段.第39页例例2.计算其中 L 为(1)半径为 a 圆心在原点 上半圆周,方向为逆时针方向;(2)从点 A(a,0)沿 x 轴到点 B(a,0).解解:(1)取L参数方程为(2)取 L 方程为则则第40页例例3.设在力场作用下,质点由沿移动到解解:(1)(2)参数方程为试求力场对质点所作功.其中为第41页三、两类曲线积分之间联络三
9、、两类曲线积分之间联络设有向光滑弧 L 在(x,y)点与L同向切向量方向余弦为则两类曲线积分有以下联络令记 A 在 t 上投影为则第44页类似地,在空间曲线 上两类曲线积分联络是令记 A 在 t 上投影为设空间有向光滑弧 L 在(x,y,z)点与L同向切向量方向余弦为第45页1.定义2.性质(1)可加性 (2)方向性内容小结内容小结3.计算计算方法计算方法:把曲线方程和弧长元素dx,dy或 dz代入被积表示式,从起点参数值到终点参数值积分4.两类曲线积分联络作业作业:作业册 P5559第48页原点 O 距离成正比,思索与练习思索与练习1.设一个质点在处受恒指向原点,沿椭圆此质点由点沿逆时针移动
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 曲线 积分 公共课 一等奖 全国 获奖 课件
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【w****g】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【w****g】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。