七年级下册数学复习提纲(人教版教学文案.doc
《七年级下册数学复习提纲(人教版教学文案.doc》由会员分享,可在线阅读,更多相关《七年级下册数学复习提纲(人教版教学文案.doc(6页珍藏版)》请在咨信网上搜索。
七年级下册数学 第五章 相交线与平行线 5.1 相交线 对顶角相等。 过一点有且只有一条直线与已知直线垂直。 连接直线外一点与直线上各点的所有线段中,垂线段最短(简单说成:垂线段最短)。 过两点有且只有一条直线 两点之间线段最短 余角:两个角的和为90度,这两个角叫做互为余角。 补角:两个角的和为180度,这两个角叫做互为补角。 对顶角:两个角有一个公共顶点,其中一个角的两边是另一个角两边的反向延长线。这两个角就是对顶角。 同位角:在“三线八角”中,位置相同的角,就是同位角。 内错角:在“三线八角”中,夹在两直线内,位置错开的角,就是内错角。 同旁内角:在“三线八角”中,夹在两直线内,在第三条直线同旁的角,就是同旁内角。 5.2 平行线 经过直线外一点,有且只有一条直线与这条直线平行。 如果两条直线都与第三条直线平行,那么这两条直线也互相平行。 直线平行的条件: 两条直线被第三条直线所截,如果同位角相等,那么两直线平行。 两条直线被第三条直线所截,如果内错角相等,那么两直线平行。 两条直线被第三条直线所截,如果同旁内角互补,那么两直线平行。 5.3 平行线的性质 同角或等角的补角相等 同角或等角的余角相等 过一点有且只有一条直线和已知直线垂直 直线外一点与直线上各点连接的所有线段中,垂线段最短 平行公理 经过直线外一点,有且只有一条直线与这条直线平行 如果两条直线都和第三条直线平行,这两条直线也互相平行 同位角相等,两直线平行 内错角相等,两直线平行 同旁内角互补,两直线平行 两直线平行,同位角相等 两直线平行,内错角相等 两直线平行,同旁内角互补 两条平行线被第三条直线所截,同位角相等。 两条平行线被第三条直线所截,内错角相等。 两条平行线被第三条直线所截,同旁内角互补。 判断一件事情的语句,叫做命题。 第六章 实数 平方根 如果一个正数x的平方等于a,那么这个正数x叫做a的算术平方根,2是根指数。 a的算术平方根读作“根号a”,a叫做被开方数。 0的算术平方根是0。 如果一个数的平方等于a,那么这个数叫做a的平方根或二次方根。 求一个数a的平方根的运算,叫做开平方。 立方根 如果一个数的立方等于a,那么这个数叫做a的立方根或三次方根。 求一个数的立方根的运算,叫做开立方。 实数 无限不循环小数又叫做无理数。 有理数和无理数统称实数。 第七章平面直角坐标系 -3 -2 -1 0 1 a b 1 -1 -2 -3 P(a,b) Y x (一)有序数对:有顺序的两个数a与b组成的数对。 1、记作(a ,b);注意:a、b的先后顺序对位置的影响。 2、坐标平面上的任意一点P的坐标,都和惟一的一对 有序实数对() 一一对应;其中,为横坐标,为纵坐标坐标; 3、轴上的点,纵坐标等于0;轴上的点,横坐标等于0; 坐标轴上的点不属于任何象限; (二) 平面直角坐标系 平面直角坐标系:我们可以在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。 1.历史:法国数学家笛卡儿最早引入坐标系,用代数方法研究几何图形 ; 2.构成坐标系的各种名称; 水平的数轴称为x轴或横轴,习惯上取向右为正方向 竖直的数轴称为y轴或纵轴,取向上方向为正方向 象限 横坐标 纵坐标 第一象限 正 正 第二象限 负 正 第三象限 负 负 第四象限 正 负 两坐标轴的交战为平面直角坐标系的原点 3.各种特殊点的坐标特点。 象限:坐标轴上的点不属于任何象限 第一象限:x>0,y>0 第二象限:x<0,y>0 第三象限:x<0,y<0 第四象限:x>0,y<0 横坐标轴上的点:(x,0) 纵坐标轴上的点:(0,y) (三)坐标方法的简单应用 1、用坐标表示地理位置; 2、用坐标表示平移。 二、平行于坐标轴的直线的点的坐标特点: 平行于x轴(或横轴)的直线上的点的纵坐标相同; 平行于y轴(或纵轴)的直线上的点的横坐标相同。 a) 在与轴平行的直线上, 所有点的纵坐标相等; Y A B B 点A、B的纵坐标都等于; X Y X b) 在与轴平行的直线上,所有点的横坐标相等; C D 点C、D的横坐标都等于; 三、各象限的角平分线上的点的坐标特点: 第一、三象限角平分线上的点的横纵坐标相同; 第二、四象限角平分线上的点的横纵坐标相反。 c) 若点P()在第一、三象限的角平分线上,则,即横、纵坐标相等; d) 若点P()在第二、四象限的角平分线上,则,即横、纵坐标互为相反数;y P O X X y P O 在第一、三象限的角平分线上 在第二、四象限的角平分线上 四、与坐标轴、原点对称的点的坐标特点: 关于x轴对称的点的横坐标相同,纵坐标互为相反数 关于y轴对称的点的纵坐标相同,横坐标互为相反数 关于原点对称的点的横坐标、纵坐标都互为相反数 e) 点P关于轴的对称点为, 即横坐标不变,纵坐标互为相反数; f) 点P关于轴的对称点为, 即纵坐标不变,横坐标互为相反数; X y P O X y P O X y P O g) 点P关于原点的对称点为,即横、纵坐标都互为相反数; 关于x轴对称 关于y轴对称 关于原点对称 五、特殊位置点的特殊坐标: 坐标轴上 点P(x,y) 连线平行于 坐标轴的点 点P(x,y)在各象限 的坐标特点 象限角平分线上 的点 X轴 Y轴 原点 平行X轴 平行Y轴 第 一象限 第二象限 第三象限 第四象限 第一、 三象限 第二、四象限 (x,0) (0,y) (0,0) 纵坐标相同横坐标不同 横坐标相同纵坐标不同 x>0 y>0 x<0 y>0 x<0 y<0 x>0 y<0 (m,m) (m,-m) 六、利用平面直角坐标系绘制区域内一些点分布情况平面图过程如下: • 建立坐标系,选择一个适当的参照点为原点,确定x轴、y轴的正方向; • 根据具体问题确定适当的比例尺,在坐标轴上标出单位长度; P(x,y) P(x,y-a) P(x-a,y) P(x+a,y) P(x,y+a) 向上平移a个单位长度 向下平移a个单位长度 向右平移a个单位长度 向左平移a个单位长度 • 在坐标平面内画出这些点,写出各点的坐标和各个地点的名称。 七、用坐标表示平移:见下图 八 、点到坐标轴的距离:点到x轴的距离=纵坐标的绝对值,点到y轴的距离=横坐标的绝对值。即A(x,y),到x轴的距离=|y|,到y轴的距离=|x| 九、 对称两点的坐标特征:1、关于x轴对称两点:横坐标相同,纵坐标互为相反数。2、关于y轴对称两点:横坐标互为相反数,纵坐标相同。3、关于原点对称两点:横、纵坐标均互为相反数。即:若A(a,b) ,B(a,-b), 则A与B关于x轴对称,若A(a,b), B(-a,b),则A与B关于y轴对称。若A(a,b),B(-a,-b),则A与B关于原点对称 第八章 二元一次方程组 1、二元一次方程组的意义:含有两个未知数的方程并且所含未知项的最高次数是1,这样的整式方程叫做二元一次方程。 把两个一次方程联立在一起,那么这两个方程就组成了一个二元一次方程组。 有几个方程组成的一组方程叫做方程组。如果方程组中含有两个未知数,且含未知数的项的次数都是一次,那么这样的方程组叫做二元一次方程组。 2、 二元一次方程组有两种解法,一种是代入消元法,一种是加减消元法. 代入消元法:把二元一次方程中的一个方程的一个未知数用含另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解。 加减消元法:两个二元一次方程中同一未知数的系数相反或相等时,把这两个方程的两边分别相加或向减,就能消去这个未知数,得到一个一元一次方程。 3、三元一次方程组:在3个方程组中,共含有3个未知数,且每个未知数的次数都是1次,像这样的方程组叫做三元一次方程组. 第九章 不等式与不等式组 1、不等式:用不等号将两个解析式连结起来所成的式子。 2、不等式的最基本性质有:①如果x>y,那么y<x;如果y<x,那么x>y;②如果x>y,y>z;那么x>z;③如果x>y,而z为任意实数,那么x+z>y+z;④ 如果x>y,z>0,那么xz>yz;⑤如果x>y,z<0,那么xz<yz。 2、不等式的基本性质: 性质1:如果a>b,b>c,那么a>c(不等式的传递性). 性质2:如果a>b,那么a+c>b+c(不等式的可加性). 性质3:如果a>b,c>0,那么ac>bc;如果a>b,c<0,ac<bc.(不等式的乘法法则) 性质4:如果a>b,c>d,那么a+c>b+d. (不等式的加法法则) 性质5:如果a>b>0,c>d>0,那么ac>bd. (可乘性) 性质6:如果a>b>0,n∈N,n>1,那么an>bn,且.当0<n<1时也成立. (乘方法则) 性质7:如果a>等于b c>b 那么c大于等于a 性质7不一定成立,如a取值28,b取值3,c取值19,则c不大于a 4、不等式组:几个含有相同未知数的不等式联立起来,叫做不等式组. 5、解不等式组,可以先把其中的不等式逐条算出各自的解集,然后分别在数轴上表示出来。 ①若两个未知数的解集在数轴上表示同向左,就取在左边的未知数的解集为不等式组的解集,此乃“同小取小” ②若两个未知数的解集在数轴上表示同向右,就取在右边的未知数的解集为不等式组的解集,此乃“同大取大” ③若两个未知数的解集在数轴上相交,就取它们之间的值为不等式组的解集。若x表示不等式的解集,此时一般表示为a<x<b,或a≤x≤b。此乃“相交取中” ④若两个未知数的解集在数轴上向背,那么不等式组的解集就是空集,不等式组无解。此乃“向背取空” 第十章 数据的收集、整理与描述 1、全面调查:考察全体对象的调查叫做全面调查,也叫普查。 2、抽样调查:只抽取一部分对象进行调查,然后根据数据推断全体对象的情况。要考察的全体对象称为总体,组成总体的每一个考察对象称为个体,被抽取的那些个体组成一个样本,样本中个体的数目称为样本容量。 3、直方图的绘制方法:①集中和记录数据,求出其最大值和最小值。数据的数量应在100个以上,在数量不多的情况下,至少也应在50个以上。 ②将数据分成若干组,并做好记号。分组的数量在5-12之间较为适宜。 ③计算组距的宽度。用组数去除最大值和最小值之差,求出组距的宽度。 ④计算各组的界限位。各组的界限位可以从第一组开始依次计算,第一组的下界为最小值减去组距的一半,第一组的上界为其下界值加上组距。第二组的下界限位为第一组的上界限值,第二组的下界限值加上组距,就是第二组的上界限位,依此类推。 ⑤统计各组数据出现频数,作频数分布表。 ⑥作直方图。以组距为底长,以频数为高,作各组的矩形图。- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 年级 下册 数学 复习 提纲 人教版 教学 文案
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精***】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精***】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文