2020-2021学年新课标B版数学必修4-阶段检测试题1.docx
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 名师一号 名师 一号 2020 2021 学年 新课 数学 必修 阶段 检测 试题
- 资源描述:
-
阶段检测试题一 一、选择题(共10小题,每题5分,共50分) 1.若角-600°的终边上有一点(-4,a),则a的值为( ) A.4 B.-4 C.±4 D.- 解析 ∵(-4,a)在角-600°的终边上, ∴tan(-600°)=-. tan(-600°)=tan120°=-tan60°=-. ∴-=-,∴a=4. 答案 A 2.若sin=,则cos=( ) A. B. C.- D.- 解析 ∵+=, cos=cos=sin=. 答案 A 3.圆弧的长等于该圆内接正三角形的边长,则该弧所对的圆心角的弧度数是( ) A. B.1 C. D. 解析 设圆的半径为R,则其内接正三角形的边长为R, ∴圆弧长为R,故圆心角α==. 答案 D 4.函数y=3sin的单调递增区间是( ) A.(k∈Z) B.(k∈Z) C.(k∈Z) D.(k∈Z) 解析 y=3sin=-3sin,∴其单调递增区间是y=3sin的单调递减区间,由2kπ+≤2x-≤2kπ+,k∈Z,得kπ+≤x≤kπ+,k∈Z. 答案 C 5.已知函数f(x)=Asin(ωx+φ)的部分图象如图所示,则f(x)的解析式是( ) A.f(x)=2sin(x∈R) B.f(x)=2sin(x∈R) C.f(x)=2sin(x∈R) D.f(x)=2sin(x∈R) 解析 由图象可知,当x=时,y取得最大值. 经检验,只有A正确. 答案 A 6.把函数y=sinx(x∈R)的图象上全部的点向左平移个单位长度,再把所得图象上全部点的横坐标伸长到原来的2倍(纵坐标不变),得到的图象所表示的函数为( ) A.y=sin,x∈R B.y=sin,x∈R C.y=sin,x∈R D.y=sin,x∈R 解析 y=sinx y=siny=sin. 答案 B 7.下列关系式中正确的是( ) A.sin11°<cos10°<sin168° B.sin168°<sin11°<cos10° C.sin11°<sin168°<cos10° D.sin168°<cos10°<sin11° 解析 cos10°=sin80°,sin168°=sin12°, ∵y=sinx在(0°,90°)上递增,且11°<12°<80°, ∴sin11°<sin12°<sin80°,故sin11°<sin168°<cos10°. 答案 C 8.已知函数y=tan(2x+φ)的图象过点,则φ可以是( ) A.- B. C.- D. 解析 ∵y=tan(2x+φ)过点,∴tan=0. ∴+φ=kπ,k∈Z,∴φ=kπ-,k∈Z. 当k=0时,φ=-. 答案 A 9.为了使函数y=sinωx(ω>0)在区间上至少消灭50次最大值,则ω的最小值是( ) A.98π B.π C.π D.100π 解析 由T≤1,得T≤,即≤,ω≥π. 答案 B 10.设函数f(x)=sin-1(ω>0)的最小正周期为,则f(x)图象的一条对称轴方程是( ) A.x= B.x= C.x= D.x= 解析 T==,∴ω=3. 令3x+=kπ+,k∈Z,∴x=+,k∈Z. ∴y=sin-1的对称轴为x=+,k∈Z. 当k=0时,x=,故选A. 答案 A 二、填空题(共4小题,每小题5分,共20分) 11.函数y=tan的最小正周期为________. 解析 由公式T=可得T=. 答案 12.若α的终边落在直线y=-x上,则+的值为________. 解析 依题意,角α的终边在其次、四象限, ∴sinαcosα<0. ∴原式=+==0. 答案 0 13.已知函数f(x)=3sin(ω>0)和g(x)=2cos(2x+φ)+1的图象的对称轴完全相同,若x∈,则f(x)的取值范围是________. 解析 假如两个函数的图象对称轴完全相同,那么它们的周期必需相同,∴ω=2,即f(x)=3sin. ∵x∈, ∴2x-∈. ∴sin∈. 故f(x)∈. 答案 14.定义在R上的函数f(x)既是奇函数又是周期函数,若f(x)的最小正周期是π,且当x∈时,f(x)=sinx,则f=________. 解析 f=f=f=-f =-sin=-. 答案 - 三、解答题(共4个小题,15、16、17题12分,18题14分) 15.(12分)已知函数f(x)=cos. (1)若f(α)=,其中<α<,求sin的值; (2)设g(x)=f(x)·f,求函数g(x)在区间上的最大值和最小值. 解析 (1)由于f(α)=cos=, 且0<α-<, 所以sin=. (2)g(x)=f(x)·f=cos· cos=sin·cos =sin=cos2x. 当x∈时,2x∈. 则当x=0时,g(x)的最大值为; 当x=时,g(x)的最小值为-. 16.(12分)f(α)=. (1)化简f(α); (2)若f(α)=,且<α<,求cosα-sinα的值; (3)若α=-π,求f(α)的值. 解析 (1)f(α)==sinα·cosα. (2)由f(a)=sinαcosα=,可知 (cosα-sinα)2=cos2α-2sinαcosα+sin2α =1-2sinαcosα =1-2×=. 又∵<α<, ∴cosα<sinα, 即cosα-sinα<0. ∴cosα-sinα=-. (3)∵α=-=-6×2π+, ∴f=cos·sin =cos·sin =cos·sin =cos·sin =cos· =·=-. 17.(12分)已知函数f(x)=Asin(ωx+φ)的图象如图所示. (1)求A,ω及φ的值; (2)若tanα=2,求f的值. 解析 (1)由图知A=2, T=2=π, ∴ω=2,∴f(x)=2sin(2x+φ). 又∵f=2sin=2, ∴sin=1. ∴+φ=+2kπ(k∈Z),φ=+2kπ,(k∈Z). ∵0<φ<,∴φ=. (2)由(1)可知,f(x)=2sin. ∴f=2sin=2cosα. 当α是第一象限角时,cosα=; 当α是第三象限角时,cosα=-. ∴f= 18.(14分)设函数f(x)=sin(2x+φ)(-π<φ<0),y=f(x)的图象的一条对称轴是直线x=. (1)求φ; (2)求函数y=f(x)的单调递增区间; (3)画出函数y=f(x)在区间上的图象. 解析 (1)∵x=是函数y=f(x)的图象的一条对称轴, ∴sin=±1.∴+φ=kπ+,k∈Z. ∵-π<φ<0,∴φ=-. (2)由(1)知φ=-,因此y=sin.由题意得2kπ-≤2x-≤2kπ+,k∈Z. ∴函数y=sin的单调递增区间为,k∈Z. (3)列表: x 0 π y - -1 0 1 0 - 故函数y=f(x)在区间上的图象如图.展开阅读全文
咨信网温馨提示:1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。




2020-2021学年新课标B版数学必修4-阶段检测试题1.docx



实名认证













自信AI助手
















微信客服
客服QQ
发送邮件
意见反馈



链接地址:https://www.zixin.com.cn/doc/3713764.html