广东省深圳市中考数学试卷(含答案)教学内容.doc
《广东省深圳市中考数学试卷(含答案)教学内容.doc》由会员分享,可在线阅读,更多相关《广东省深圳市中考数学试卷(含答案)教学内容.doc(25页珍藏版)》请在咨信网上搜索。
此文档仅供收集于网络,如有侵权请联系网站删除 2017年广东省深圳市中考数学试卷 一、选择题 1.﹣2的绝对值是( ) A.﹣2 B.2 C.﹣ D. 2.图中立体图形的主视图是( ) A. B. C. D. 3.随着“一带一路”建设的不断发展,我国已与多个国家建立了经贸合作关系,去年中哈铁路(中国至哈萨克斯坦)运输量达8200000吨,将8200000用科学记数法表示为( ) A.8.2×105 B.82×105 C.8.2×106 D.82×107 4.观察下列图形,其中既是轴对称又是中心对称图形的是( ) A. B. C. D. 5.下列选项中,哪个不可以得到l1∥l2?( ) A.∠1=∠2 B.∠2=∠3 C.∠3=∠5 D.∠3+∠4=180° 6.不等式组的解集为( ) A.x>﹣1 B.x<3 C.x<﹣1或x>3 D.﹣1<x<3 7.一球鞋厂,现打折促销卖出330双球鞋,比上个月多卖10%,设上个月卖出x双,列出方程( ) A.10%x=330 B.(1﹣10%)x=330 C.(1﹣10%)2x=330 D.(1+10%)x=330 8.如图,已知线段AB,分别以A、B为圆心,大于AB为半径作弧,连接弧的交点得到直线l,在直线l上取一点C,使得∠CAB=25°,延长AC至M,求∠BCM的度数为( ) A.40° B.50° C.60° D.70° 9.下列哪一个是假命题( ) A.五边形外角和为360° B.切线垂直于经过切点的半径 C.(3,﹣2)关于y轴的对称点为(﹣3,2) D.抛物线y=x2﹣4x+2017对称轴为直线x=2 10.某共享单车前a公里1元,超过a公里的,每公里2元,若要使使用该共享单车50%的人只花1元钱,a应该要取什么数( ) A.平均数 B.中位数 C.众数 D.方差 11.如图,学校环保社成员想测量斜坡CD旁一棵树AB的高度,他们先在点C处测得树顶B的仰角为60°,然后在坡顶D测得树顶B的仰角为30°,已知斜坡CD的长度为20m,DE的长为10cm,则树AB的高度是( )m. A.20 B.30 C.30 D.40 12.如图,正方形ABCD的边长是3,BP=CQ,连接AQ,DP交于点O,并分别与边CD,BC交于点F,E,连接AE,下列结论:①AQ⊥DP;②OA2=OE•OP;③S△AOD=S四边形OECF;④当BP=1时,tan∠OAE=,其中正确结论的个数是( ) A.1 B.2 C.3 D.4 二、填空题 13.因式分解:a3﹣4a= . 14.在一个不透明的袋子里,有2个黑球和1个白球,除了颜色外全部相同,任意摸两个球,摸到1黑1白的概率是 . 15.阅读理解:引入新数i,新数i满足分配律,结合律,交换律,已知i2=﹣1,那么(1+i)•(1﹣i)= . 16.如图,在Rt△ABC中,∠ABC=90°,AB=3,BC=4,Rt△MPN,∠MPN=90°,点P在AC上,PM交AB于点E,PN交BC于点F,当PE=2PF时,AP= . 三、解答题 17.计算:|﹣2|﹣2cos45°+(﹣1)﹣2+. 18.先化简,再求值:( +)÷,其中x=﹣1. 19.深圳市某学校抽样调查,A类学生骑共享单车,B类学生坐公交车、私家车等,C类学生步行,D类学生(其它),根据调查结果绘制了不完整的统计图. 类型 频数 频率 A 30 x B 18 0.15 C m 0.40 D n y (1)学生共 人,x= ,y= ; (2)补全条形统计图; (3)若该校共有2000人,骑共享单车的有 人. 20.一个矩形周长为56厘米. (1)当矩形面积为180平方厘米时,长宽分别为多少? (2)能围成面积为200平方米的矩形吗?请说明理由. 21.如图,一次函数y=kx+b与反比例函数y=(x>0)交于A(2,4),B(a,1),与x轴,y轴分别交于点C,D. (1)直接写出一次函数y=kx+b的表达式和反比例函数y=(x>0)的表达式; (2)求证:AD=BC. 22.如图,线段AB是⊙O的直径,弦CD⊥AB于点H,点M是上任意一点,AH=2,CH=4. (1)求⊙O的半径r的长度; (2)求sin∠CMD; (3)直线BM交直线CD于点E,直线MH交⊙O于点N,连接BN交CE于点F,求HE•HF的值. 23.如图,抛物线y=ax2+bx+2经过点A(﹣1,0),B(4,0),交y轴于点C; (1)求抛物线的解析式(用一般式表示); (2)点D为y轴右侧抛物线上一点,是否存在点D使S△ABC=S△ABD?若存在请直接给出点D坐标;若不存在请说明理由; (3)将直线BC绕点B顺时针旋转45°,与抛物线交于另一点E,求BE的长. 2017年广东省深圳市中考数学试卷 参考答案与试题解析 一、选择题 1.﹣2的绝对值是( ) A.﹣2 B.2 C.﹣ D. 【考点】15:绝对值. 【分析】根据绝对值的定义,可直接得出﹣2的绝对值. 【解答】解:|﹣2|=2. 故选B. 2.图中立体图形的主视图是( ) A. B. C. D. 【考点】U2:简单组合体的三视图. 【分析】根据主视图是从正面看的图形解答. 【解答】解:从正面看,共有两层,下面三个小正方体,上面有一个小正方体,在中间. 故选A. 3.随着“一带一路”建设的不断发展,我国已与多个国家建立了经贸合作关系,去年中哈铁路(中国至哈萨克斯坦)运输量达8200000吨,将8200000用科学记数法表示为( ) A.8.2×105 B.82×105 C.8.2×106 D.82×107 【考点】1I:科学记数法—表示较大的数. 【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数. 【解答】解:将8200000用科学记数法表示为:8.2×106. 故选:C. 4.观察下列图形,其中既是轴对称又是中心对称图形的是( ) A. B. C. D. 【考点】R5:中心对称图形;P3:轴对称图形. 【分析】根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义即可判断出. 【解答】解:A、是中心对称图形,不是轴对称图形,选项不符合题意; B、是轴对称图形,不是中心对称图形,选项不符合题意; C、是中心对称图形,不是轴对称图形,选项不符合题意; D、是中心对称图形,也是轴对称图形,选项符合题意. 故选D. 5.下列选项中,哪个不可以得到l1∥l2?( ) A.∠1=∠2 B.∠2=∠3 C.∠3=∠5 D.∠3+∠4=180° 【考点】J9:平行线的判定. 【分析】分别根据平行线的判定定理对各选项进行逐一判断即可. 【解答】解:A、∵∠1=∠2,∴l1∥l2,故本选项错误; B、∵∠2=∠3,∴l1∥l2,故本选项错误; C、∠3=∠5不能判定l1∥l2,故本选项正确; D、∵∠3+∠4=180°,∴l1∥l2,故本选项错误. 故选C. 6.不等式组的解集为( ) A.x>﹣1 B.x<3 C.x<﹣1或x>3 D.﹣1<x<3 【考点】CB:解一元一次不等式组. 【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集. 【解答】解:解不等式3﹣2x<5,得:x>﹣1, 解不等式x﹣2<1,得:x<3, ∴不等式组的解集为﹣1<x<3, 故选:D. 7.一球鞋厂,现打折促销卖出330双球鞋,比上个月多卖10%,设上个月卖出x双,列出方程( ) A.10%x=330 B.(1﹣10%)x=330 C.(1﹣10%)2x=330 D.(1+10%)x=330 【考点】89:由实际问题抽象出一元一次方程. 【分析】设上个月卖出x双,等量关系是:上个月卖出的双数×(1+10%)=现在卖出的双数,依此列出方程即可. 【解答】解:设上个月卖出x双,根据题意得 (1+10%)x=330. 故选D. 8.如图,已知线段AB,分别以A、B为圆心,大于AB为半径作弧,连接弧的交点得到直线l,在直线l上取一点C,使得∠CAB=25°,延长AC至M,求∠BCM的度数为( ) A.40° B.50° C.60° D.70° 【考点】N2:作图—基本作图;KG:线段垂直平分线的性质. 【分析】根据作法可知直线l是线段AB的垂直平分线,故可得出AC=BC,再由三角形外角的性质即可得出结论. 【解答】解:∵由作法可知直线l是线段AB的垂直平分线, ∴AC=BC, ∴∠CAB=∠CBA=25°, ∴∠BCM=∠CAB+∠CBA=25°+25°=50°. 故选B. 9.下列哪一个是假命题( ) A.五边形外角和为360° B.切线垂直于经过切点的半径 C.(3,﹣2)关于y轴的对称点为(﹣3,2) D.抛物线y=x2﹣4x+2017对称轴为直线x=2 【考点】O1:命题与定理. 【分析】分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案. 【解答】解:A、五边形外角和为360°是真命题,故A不符合题意; B、切线垂直于经过切点的半径是真命题,故B不符合题意; C、(3,﹣2)关于y轴的对称点为(﹣3,2)是假命题,故C符合题意; D、抛物线y=x2﹣4x+2017对称轴为直线x=2是真命题,故D不符合题意; 故选:C. 10.某共享单车前a公里1元,超过a公里的,每公里2元,若要使使用该共享单车50%的人只花1元钱,a应该要取什么数( ) A.平均数 B.中位数 C.众数 D.方差 【考点】WA:统计量的选择. 【分析】由于要使使用该共享单车50%的人只花1元钱,根据中位数的意义分析即可 【解答】解:根据中位数的意义, 故只要知道中位数就可以了. 故选B. 11.如图,学校环保社成员想测量斜坡CD旁一棵树AB的高度,他们先在点C处测得树顶B的仰角为60°,然后在坡顶D测得树顶B的仰角为30°,已知斜坡CD的长度为20m,DE的长为10cm,则树AB的高度是( )m. A.20 B.30 C.30 D.40 【考点】TA:解直角三角形的应用﹣仰角俯角问题. 【分析】先根据CD=20米,DE=10m得出∠DCE=30°,故可得出∠DCB=90°,再由∠BDF=30°可知∠DBE=60°,由DF∥AE可得出∠BGF=∠BCA=60°,故∠GBF=30°,所以∠DBC=30°,再由锐角三角函数的定义即可得出结论. 【解答】解:在Rt△CDE中, ∵CD=20m,DE=10m, ∴sin∠DCE==, ∴∠DCE=30°. ∵∠ACB=60°,DF∥AE, ∴∠BGF=60° ∴∠ABC=30°,∠DCB=90°. ∵∠BDF=30°, ∴∠DBF=60°, ∴∠DBC=30°, ∴BC===20m, ∴AB=BC•sin60°=20×=30m. 故选B. 12.如图,正方形ABCD的边长是3,BP=CQ,连接AQ,DP交于点O,并分别与边CD,BC交于点F,E,连接AE,下列结论:①AQ⊥DP;②OA2=OE•OP;③S△AOD=S四边形OECF;④当BP=1时,tan∠OAE=,其中正确结论的个数是( ) A.1 B.2 C.3 D.4 【考点】S9:相似三角形的判定与性质;KD:全等三角形的判定与性质;LE:正方形的性质;T7:解直角三角形. 【分析】由四边形ABCD是正方形,得到AD=BC,∠DAB=∠ABC=90°,根据全等三角形的性质得到∠P=∠Q,根据余角的性质得到AQ⊥DP;故①正确;根据相似三角形的性质得到AO2=OD•OP,由OD≠OE,得到OA2≠OE•OP;故②错误;根据全等三角形的性质得到CF=BE,DF=CE,于是得到S△ADF﹣S△DFO=S△DCE﹣S△DOF,即S△AOD=S四边形OECF;故③正确;根据相似三角形的性质得到BE=,求得QE=,QO=,OE=,由三角函数的定义即可得到结论. 【解答】解:∵四边形ABCD是正方形, ∴AD=BC,∠DAB=∠ABC=90°, ∵BP=CQ, ∴AP=BQ, 在△DAP与△ABQ中,, ∴△DAP≌△ABQ, ∴∠P=∠Q, ∵∠Q+∠QAB=90°, ∴∠P+∠QAB=90°, ∴∠AOP=90°, ∴AQ⊥DP; 故①正确; ∵∠DOA=∠AOP=90,∠ADO+∠P=∠ADO+∠DAO=90°, ∴∠DAO=∠P, ∴△DAO∽△APO, ∴, ∴AO2=OD•OP, ∵AE>AB, ∴AE>AD, ∴OD≠OE, ∴OA2≠OE•OP;故②错误; 在△CQF与△BPE中, ∴△CQF≌△BPE, ∴CF=BE, ∴DF=CE, 在△ADF与△DCE中,, ∴△ADF≌△DCE, ∴S△ADF﹣S△DFO=S△DCE﹣S△DOF, 即S△AOD=S四边形OECF;故③正确; ∵BP=1,AB=3, ∴AP=4, ∵△AOP∽△DAP, ∴, ∴BE=,∴QE=, ∵△QOE∽△PAD, ∴, ∴QO=,OE=, ∴AO=5﹣QO=, ∴tan∠OAE==,故④正确, 故选C. 二、填空题 13.因式分解:a3﹣4a= a(a+2)(a﹣2) . 【考点】55:提公因式法与公式法的综合运用. 【分析】首先提取公因式a,进而利用平方差公式分解因式得出即可. 【解答】解:a3﹣4a=a(a2﹣4)=a(a+2)(a﹣2). 故答案为:a(a+2)(a﹣2). 14.在一个不透明的袋子里,有2个黑球和1个白球,除了颜色外全部相同,任意摸两个球,摸到1黑1白的概率是 . 【考点】X6:列表法与树状图法. 【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与所摸到1黑1白的情况,再利用概率公式即可求得答案. 【解答】解:依题意画树状图得: ∵共有6种等可能的结果,所摸到的球恰好为1黑1白的有4种情况, ∴所摸到的球恰好为1黑1白的概率是: =. 故答案为:. 15.阅读理解:引入新数i,新数i满足分配律,结合律,交换律,已知i2=﹣1,那么(1+i)•(1﹣i)= 2 . 【考点】4F:平方差公式;2C:实数的运算. 【分析】根据定义即可求出答案. 【解答】解:由题意可知:原式=1﹣i2=1﹣(﹣1)=2 故答案为:2 16.如图,在Rt△ABC中,∠ABC=90°,AB=3,BC=4,Rt△MPN,∠MPN=90°,点P在AC上,PM交AB于点E,PN交BC于点F,当PE=2PF时,AP= 3 . 【考点】S9:相似三角形的判定与性质. 【分析】如图作PQ⊥AB于Q,PR⊥BC于R.由△QPE∽△RPF,推出==2,可得PQ=2PR=2BQ,由PQ∥BC,可得AQ:QP:AP=AB:BC:AC=3:4:5,设PQ=4x,则AQ=3x,AP=5x,BQ=2x,可得2x+3x=3,求出x即可解决问题. 【解答】解:如图作PQ⊥AB于Q,PR⊥BC于R. ∵∠PQB=∠QBR=∠BRP=90°, ∴四边形PQBR是矩形, ∴∠QPR=90°=∠MPN, ∴∠QPE=∠RPF, ∴△QPE∽△RPF, ∴==2, ∴PQ=2PR=2BQ, ∵PQ∥BC, ∴AQ:QP:AP=AB:BC:AC=3:4:5,设PQ=4x,则AQ=3x,AP=5x,BQ=2x, ∴2x+3x=3, ∴x=, ∴AP=5x=3. 故答案为3. 三、解答题 17.计算:|﹣2|﹣2cos45°+(﹣1)﹣2+. 【考点】2C:实数的运算;6F:负整数指数幂;T5:特殊角的三角函数值. 【分析】因为<2,所以|﹣2|=2﹣,cos45°=, =2,分别计算后相加即可. 【解答】解:|﹣2|﹣2cos45°+(﹣1)﹣2+, =2﹣﹣2×+1+2, =2﹣﹣+1+2, =3. 18.先化简,再求值:( +)÷,其中x=﹣1. 【考点】6D:分式的化简求值. 【分析】根据分式的运算法则即可求出答案. 【解答】解:当x=﹣1时, 原式=× =3x+2 =﹣1 19.深圳市某学校抽样调查,A类学生骑共享单车,B类学生坐公交车、私家车等,C类学生步行,D类学生(其它),根据调查结果绘制了不完整的统计图. 类型 频数 频率 A 30 x B 18 0.15 C m 0.40 D n y (1)学生共 120 人,x= 0.25 ,y= 0.2 ; (2)补全条形统计图; (3)若该校共有2000人,骑共享单车的有 500 人. 【考点】VC:条形统计图;V5:用样本估计总体;V7:频数(率)分布表. 【分析】(1)根据B类学生坐公交车、私家车的人数以及频率,求出总人数,再根据频数与频率的关系一一解决即可; (2)求出m、n的值,画出条形图即可; (3)用样本估计总体的思想即可解决问题; 【解答】解:(1)由题意总人数==120人, x==0.25,m=120×0.4=48, y=1﹣0.25﹣0.4﹣0.15=0.2, n=120×0.2=24, (2)条形图如图所示, (3)2000×0.25=500人, 故答案为500. 20.一个矩形周长为56厘米. (1)当矩形面积为180平方厘米时,长宽分别为多少? (2)能围成面积为200平方米的矩形吗?请说明理由. 【考点】AD:一元二次方程的应用. 【分析】(1)设出矩形的一边长为未知数,用周长公式表示出另一边长,根据面积列出相应方程求解即可. (2)同样列出方程,若方程有解则可,否则就不可以. 【解答】解:(1)设矩形的长为x厘米,则另一边长为(28﹣x)厘米,依题意有 x(28﹣x)=180, 解得x1=10(舍去),x2=18, 28﹣x=28﹣18=10. 故长为18厘米,宽为10厘米; (2)设矩形的长为x厘米,则宽为(28﹣x)厘米,依题意有 x(28﹣x)=200, 即x2﹣28x+200=0, 则△=282﹣4×200=784﹣800<0,原方程无解, 故不能围成一个面积为200平方厘米的矩形. 21.如图,一次函数y=kx+b与反比例函数y=(x>0)交于A(2,4),B(a,1),与x轴,y轴分别交于点C,D. (1)直接写出一次函数y=kx+b的表达式和反比例函数y=(x>0)的表达式; (2)求证:AD=BC. 【考点】G8:反比例函数与一次函数的交点问题. 【分析】(1)先确定出反比例函数的解析式,进而求出点B的坐标,最后用待定系数法求出直线AB的解析式; (2)由(1)知,直线AB的解析式,进而求出C,D坐标,构造直角三角形,利用勾股定理即可得出结论. 【解答】解:(1)将点A(2,4)代入y=中,得,m=2×4=8, ∴反比例函数的解析式为y=, 将点B(a,1)代入y=中,得,a=8, ∴B(8,1), 将点A(2,4),B(8,1)代入y=kx+b中,得,, ∴, ∴一次函数解析式为y=﹣x+5; (2)∵直线AB的解析式为y=﹣x+5, ∴C(10,0),D(0,5), 如图, 过点A作AE⊥y轴于E,过点B作BF⊥x轴于F, ∴E(0,4),F(8,0), ∴AE=2,DE=1,BF=1,CF=2, 在Rt△ADE中,根据勾股定理得,AD==, 在Rt△BCF中,根据勾股定理得,BC==, ∴AD=BC. 22.如图,线段AB是⊙O的直径,弦CD⊥AB于点H,点M是上任意一点,AH=2,CH=4. (1)求⊙O的半径r的长度; (2)求sin∠CMD; (3)直线BM交直线CD于点E,直线MH交⊙O于点N,连接BN交CE于点F,求HE•HF的值. 【考点】MR:圆的综合题. 【分析】(1)在Rt△COH中,利用勾股定理即可解决问题; (2)只要证明∠CMD=△COA,求出sin∠COA即可; (3)由△EHM∽△NHF,推出=,推出HE•HF=HM•HN,又HM•HN=AH•HB,推出HE•HF=AH•HB,由此即可解决问题. 【解答】解:(1)如图1中,连接OC. ∵AB⊥CD, ∴∠CHO=90°, 在Rt△COH中,∵OC=r,OH=r﹣2,CH=4, ∴r2=42+(r﹣2)2, ∴r=5. (2)如图1中,连接OD. ∵AB⊥CD,AB是直径, ∴==, ∴∠AOC=∠COD, ∵∠CMD=∠COD, ∴∠CMD=∠COA, ∴sin∠CMD=sin∠COA==. (3)如图2中,连接AM. ∵AB是直径, ∴∠AMB=90°, ∴∠MAB+∠ABM=90°, ∵∠E+∠ABM=90°, ∴∠E=∠MAB, ∴∠MAB=∠MNB=∠E, ∵∠EHM=∠NHFM ∴△EHM∽△NHF, ∴=, ∴HE•HF=HM•HN, ∵HM•HN=AH•HB, ∴HE•HF=AH•HB=2•(10﹣2)=16. 23.如图,抛物线y=ax2+bx+2经过点A(﹣1,0),B(4,0),交y轴于点C; (1)求抛物线的解析式(用一般式表示); (2)点D为y轴右侧抛物线上一点,是否存在点D使S△ABC=S△ABD?若存在请直接给出点D坐标;若不存在请说明理由; (3)将直线BC绕点B顺时针旋转45°,与抛物线交于另一点E,求BE的长. 【考点】HF:二次函数综合题. 【分析】(1)由A、B的坐标,利用待定系数法可求得抛物线解析式; (2)由条件可求得点D到x轴的距离,即可求得D点的纵坐标,代入抛物线解析式可求得D点坐标; (3)由条件可证得BC⊥AC,设直线AC和BE交于点F,过F作FM⊥x轴于点M,则可得BF=BC,利用平行线分线段成比例可求得F点的坐标,利用待定系数法可求得直线BE解析式,联立直线BE和抛物线解析式可求得E点坐标,则可求得BE的长. 【解答】解: (1)∵抛物线y=ax2+bx+2经过点A(﹣1,0),B(4,0), ∴,解得, ∴抛物线解析式为y=﹣x2+x+2; (2)由题意可知C(0,2),A(﹣1,0),B(4,0), ∴AB=5,OC=2, ∴S△ABC=AB•OC=×5×2=5, ∵S△ABC=S△ABD, ∴S△ABD=×5=, 设D(x,y), ∴AB•|y|=×5|y|=,解得|y|=3, 当y=3时,由﹣x2+x+2=3,解得x=1或x=2,此时D点坐标为(1,3)或(2,3); 当y=﹣3时,由﹣x2+x+2=﹣3,解得x=﹣2(舍去)或x=5,此时D点坐标为(5,﹣3); 综上可知存在满足条件的点D,其坐标为(1,3)或(2,3)或(5,﹣3); (3)∵AO=1,OC=2,OB=4,AB=5, ∴AC==,BC==2, ∴AC2+BC2=AB2, ∴△ABC为直角三角形,即BC⊥AC, 如图,设直线AC与直线BE交于点F,过F作FM⊥x轴于点M, 由题意可知∠FBC=45°, ∴∠CFB=45°, ∴CF=BC=2, ∴=,即=,解得OM=2, =,即=,解得FM=6, ∴F(2,6),且B(4,0), 设直线BE解析式为y=kx+m,则可得,解得, ∴直线BE解析式为y=﹣3x+12, 联立直线BE和抛物线解析式可得,解得或, ∴E(5,﹣3), ∴BE==. 只供学习与交流- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 广东省 深圳市 中考 数学试卷 答案 教学内容
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【a199****6536】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【a199****6536】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【a199****6536】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【a199****6536】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文