2022届高三数学一轮总复习基础练习:第三章-三角函数、解三角形3-7-.docx
《2022届高三数学一轮总复习基础练习:第三章-三角函数、解三角形3-7-.docx》由会员分享,可在线阅读,更多相关《2022届高三数学一轮总复习基础练习:第三章-三角函数、解三角形3-7-.docx(6页珍藏版)》请在咨信网上搜索。
第七节 正弦定理、余弦定理应用举例 时间:45分钟 分值:100分 一、选择题 1.两座灯塔A和B与海岸观看站C的距离相等,灯塔A在观看站南偏西40°,灯塔B在观看站南偏东60°,则灯塔A在灯塔B的( ) A.北偏东10° B.北偏西10° C.南偏东80° D.南偏西80° 解析 由条件及图可知,∠A=∠B=40°,又∠BCD=60°,所以∠CBD=30°,所以∠DBA=10°,因此灯塔A在灯塔B南偏西80°. 答案 D 2.张晓华同学骑电动自行车以24 km/h的速度沿着正北方向的大路行驶,在点A处望见电视塔S在电动车的北偏东30°方向上,15 min后到点B处望见电视塔在电动车的北偏东75°方向上,则电动车在点B时与电视塔S的距离是( ) A.2 km B.3 km C.3 km D.2 km 解析 如图,由条件知AB=24×=6,在△ABS中,∠BAS=30°,AB=6,∠ABS=180°-75°=105°,所以∠ASB=45°.由正弦定理知=,所以BS=sin30°=3. 答案 B 3.轮船A和轮船B在中午12时离开海港C,两艘轮船航行方向的夹角为120°,轮船A的航行速度是25海里/小时,轮船B的航行速度是15海里/小时,下午2时两船之间的距离是( ) A.35海里 B.35海里 C.35海里 D.70海里 解析 设轮船A、B航行到下午2时时所在的位置分别是E,F,则依题意有CE=25×2=50,CF=15×2=30,且∠ECF=120°, EF= ==70. 答案 D 4.一个大型喷水池的中心有一个强大喷水柱,为了测量喷水柱喷出的水柱的高度,某人在喷水柱正西方向的点A测得水柱顶端的仰角为45°,沿点A向北偏东30°前进100 m到达点B,在B点测得水柱顶端的仰角为30°,则水柱的高度是( ) A.50 m B.100 m C.120 m D.150 m 解析 设水柱高度是h m,水柱底端为C,则在△ABC中,A=60°,AC=h,AB=100,BC=h,依据余弦定理得,(h)2=h2+1002-2·h·100·cos60°,即h2+50h-5 000=0,即(h-50)(h+100)=0,即h=50,故水柱的高度是50 m. 答案 A 5.(2021·滁州调研)线段AB外有一点C,∠ABC=60°,AB=200 km,汽车以80 km/h的速度由A向B行驶,同时摩托车以50 km/h的速度由B向C行驶,则运动开头多少h后,两车的距离最小( ) A. B.1 C. D.2 解析 如图所示,设t h后,汽车由A行驶到D,摩托车由B行驶到E,则AD=80t,BE=50t.由于AB=200,所以BD=200-80t,问题就是求DE最小时t的值. 由余弦定理,得 DE2=BD2+BE2-2BD·BEcos60° =(200-80t)2+2 500t2-(200-80t)·50t =12 900t2-42 000t+40 000. 当t=时,DE最小. 答案 C 6.如图,为了解某海疆海底构造,在海平面内一条直线上的A,B,C三点进行测量,已知AB=50 m,BC=120 m,于A处测得水深AD=80 m,于B处测得水深BE=200 m,于C处测得水深CF=110 m,则∠DEF的余弦值为( ) A. B. C. D. 解析 如图所示,作DM∥AC交BE于N,交CF于M. DF===10(m). DE===130(m). EF= ==150(m). 在△DEF中,由余弦定理, 得cos∠DEF= ==. 故选A. 答案 A 二、填空题 7.已知A,B两地的距离为10 km,B,C两地的距离为20 km,现测得∠ABC=120°,则A、C两地的距离为________km. 解析 如图所示,由余弦定理可得:AC2=100+400-2×10×20×cos120°=700, ∴AC=10(km). 答案 10 8.如图,一艘船上午9∶30在A处测得灯塔S在它的北偏东30°处,之后它连续沿正北方向匀速航行,上午10∶00到达B处,此时又测得灯塔S在它的北偏东75°处,且与它相距8n mile.此船的航速是________n mile/h. 解析 设航速为v n mile/h 在△ABS中,AB=v,BS=8,∠BSA=45°, 由正弦定理,得=, ∴v=32(n mile/h). 答案 32 9.如图,为测得河对岸塔AB的高,先在河岸上选一点C,使C在塔底B的正东方向上,测得点A的仰角为60°,再由点C沿北偏东15°方向走10米到位置D,测得∠BDC=45°,则塔AB的高是________米. 解析 在△BCD中 ,CD=10,∠BDC=45°,∠BCD=15°+90°=105°,∠DBC=30°,=,BC==10(米). 在Rt△ABC中,tan60°=, AB=BCtan60°=10(米). 答案 10 三、解答题 10.为扑灭某着火点,现场支配了两支水枪,如图,D是着火点,A、B分别是水枪位置,已知AB=15 m,在A处看到着火点的仰角为60°,∠ABC=30°,∠BAC=105°,求两支水枪的喷射距离至少是多少? 解 在△ABC中,可知∠ACB=45°, 由正弦定理,得=, 解得AC=15 m. 又∵∠CAD=60°,∴AD=30,CD=15, sin105°=sin(45°+60°)=. 由正弦定理得=. 解得BC= m. 由勾股定理可得 BD==15m, 综上可知,两支水枪的喷射距离至少分别为30 m,15 m. 11.如图,在海岸A处发觉北偏东45°方向,距A处(-1)海里的B处有一艘走私船.在A处北偏西75°方向,距A处2海里的C处的我方缉私船奉命以10海里/小时的速度追截走私船,此时走私船正以10海里/小时的速度,从B处向北偏东30°方向逃跑.问:缉私船沿什么方向行驶才能最快截获走私船?并求出所需时间. 解 设缉私船应沿CD方向行驶t小时,才能最快截获(在D点)走私船,则CD=10t海里,BD=10t海里, 在△ABC中,由余弦定理,有BC2=AB2+AC2-2AB·ACcosA =(-1)2+22-2(-1)·2·cos120°=6, 解得BC=, 又∵=, ∴sin∠ABC===, ∴∠ABC=45°,∴B点在C点的正东方向上, ∴∠CBD=90°+30°=120°, 在△BCD中,由正弦定理,得 =, ∴sin∠BCD= ==. ∴∠BCD=30°, ∴缉私船沿北偏东60°的方向行驶. 又在△BCD中,∠CBD=120°,∠BCD=30°, ∴∠D=30°,∴BD=BC,即10t=. ∴t=小时≈15分钟. ∴缉私船应沿北偏东60°的方向行驶,才能最快截获走私船,大约需要15分钟. 1.如图所示,在坡度肯定的山坡A处测得山顶上一建筑物CD的顶端C对于山坡的斜度为15°,向山顶前进100米到达B处,又测得C对于山坡的斜度为45°,若CD=50米,山坡对于地平面的坡角为θ,则cosθ=( ) A. B.2- C.-1 D. 解析 在△ABC中,由正弦定理可知,BC===50(-),在△BCD中,sin∠BDC===-1,由题图,知cosθ=sin∠ADE=sin∠BDC=-1. 答案 C 2.(2021·厦门模拟)在不等边三角形ABC中,角A、B、C所对的边分别为a,b,c,其中a为最大边,假如sin2(B+C)<sin2B+sin2C,则角A的取值范围为( ) A. B. C. D. 解析 由题意得sin2A<sin2B+sin2C, 再由正弦定理得a2<b2+c2,即b2+c2-a2>0. 则cosA=>0, ∵0<A<π,∴0<A<.又a为最大边,∴A>. 因此得角A的取值范围是. 答案 D 3.(2022·江苏卷)若△ABC的内角满足sinA+sinB=2sinC,则cosC的最小值是________. 解析 由已知sinA+sinB=2sinC及正弦定理可得a+b=2c,cosC===≥=,当且仅当3a2=2b2,即=时等号成立,∴cosC的最小值为. 答案 4.如图,在等腰直角△OPQ中,∠POQ=90°,OP=2,点M在线段PQ上. (1)若OM=,求PM的长; (2)若点N在线段MQ上,且∠MON=30°,问:当∠POM取何值时,△OMN的面积最小?并求出面积的最小值. 解 (1)在△OMP中,∠P=45°,OM=,OP=2. 由余弦定理得,OM2=OP2+PM2-2×OP×PM×cos45°, 得PM2-4PM+3=0,解得PM=1或PM=3. (2)设∠POM=α,0°≤α≤60°, 在△OMP中,由正弦定理,得=, 所以OM=,同理ON=, 故S△OMN=×OM×ON×sin∠MON =× = = = = == 由于0°≤α≤60°,30°≤2α+30°≤150°,所以当α=30°时,sin(2α+30°)的最大值为1,此时△OMN的面积取到最小值.即∠POM=30°时,△OMN的面积最小,其最小值为8-4.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 名师一号 名师 一号 2022 届高三 数学 一轮 复习 基础 练习 第三 三角函数 三角形
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【w****g】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【w****g】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【w****g】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【w****g】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文