初三数学圆知识点复习专题经典讲解学习.doc
《初三数学圆知识点复习专题经典讲解学习.doc》由会员分享,可在线阅读,更多相关《初三数学圆知识点复习专题经典讲解学习.doc(11页珍藏版)》请在咨信网上搜索。
此文档仅供收集于网络,如有侵权请联系网站删除 《圆》章节知识点复习 一、圆的概念 集合形式的概念: 1、 圆可以看作是到定点的距离等于定长的点的集合; 2、圆的外部:可以看作是到定点的距离大于定长的点的集合; 3、圆的内部:可以看作是到定点的距离小于定长的点的集合 轨迹形式的概念: 1、圆:到定点的距离等于定长的点的轨迹就是以定点为圆心,定长为半径的圆; (补充)2、垂直平分线:到线段两端距离相等的点的轨迹是这条线段的垂直平分线(也叫中垂线); 3、角的平分线:到角两边距离相等的点的轨迹是这个角的平分线; 4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线; 5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线。 二、点与圆的位置关系 1、点在圆内 点在圆内; 2、点在圆上 点在圆上; 3、点在圆外 点在圆外; 三、直线与圆的位置关系 1、直线与圆相离 无交点; 2、直线与圆相切 有一个交点; 3、直线与圆相交 有两个交点; 四、圆与圆的位置关系 外离(图1) 无交点 ; 外切(图2) 有一个交点 ; 相交(图3) 有两个交点 ; 内切(图4) 有一个交点 ; 内含(图5) 无交点 ; 五、垂径定理 垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。 推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧; (2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧; (3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧 以上共4个定理,简称2推3定理:此定理中共5个结论中,只要知道其中2个即可推出其它3个结论,即: ①是直径 ② ③ ④ 弧弧 ⑤ 弧弧 中任意2个条件推出其他3个结论。 推论2:圆的两条平行弦所夹的弧相等。 即:在⊙中,∵∥ ∴弧弧 例题1、 基本概念 1.下面四个命题中正确的一个是( ) A.平分一条直径的弦必垂直于这条直径 B.平分一条弧的直线垂直于这条弧所对的弦 C.弦的垂线必过这条弦所在圆的圆心 D.在一个圆内平分一条弧和它所对弦的直线必过这个圆的圆心 2.下列命题中,正确的是( ). A.过弦的中点的直线平分弦所对的弧 B.过弦的中点的直线必过圆心 C.弦所对的两条弧的中点连线垂直平分弦,且过圆心 D.弦的垂线平分弦所对的弧 例题2、垂径定理 1、 在直径为52cm的圆柱形油槽内装入一些油后,截面如图所示,如果油的最大深度为16cm,那么油面宽度AB是________cm. 2、在直径为52cm的圆柱形油槽内装入一些油后,,如果油面宽度是48cm,那么油的最大深度为________cm. 3、如图,已知在⊙中,弦,且,垂足为,于,于. (1)求证:四边形是正方形. (2)若,,求圆心到弦和的距离. 4、已知:△ABC内接于⊙O,AB=AC,半径OB=5cm,圆心O到BC的距离为3cm,求AB的长. 5、如图,F是以O为圆心,BC为直径的半圆上任意一点,A是的中点,AD⊥BC于D,求证:AD=BF. 例题3、度数问题 1、已知:在⊙中,弦,点到的距离等于的一半,求:的度数和圆的半径. 2、已知:⊙O的半径,弦AB、AC的长分别是、.求的度数。 例题4、相交问题 如图,已知⊙O的直径AB和弦CD相交于点E,AE=6cm,EB=2cm,∠BED=30°,求CD的长. A B D C E O 例题5、平行问题 在直径为50cm的⊙O中,弦AB=40cm,弦CD=48cm,且AB∥CD,求:AB与CD之间的距离. 例题6、同心圆问题 如图,在两个同心圆中,大圆的弦AB,交小圆于C、D两点,设大圆和小圆的半径分别为.求证:. 例题7、平行与相似 已知:如图,是⊙的直径,是弦,,于.求证:. 六、圆心角定理 圆心角定理:同圆或等圆中,相等的圆心角所对的弦相等,所对的弧相等,弦心距相等。 此定理也称1推3定理,即上述四个结论中, 只要知道其中的1个相等,则可以推出其它的3个结论, 即:①;②; ③;④ 弧弧 七、圆周角定理 1、圆周角定理:同弧所对的圆周角等于它所对的圆心的角的一半。 即:∵和是弧所对的圆心角和圆周角 ∴ 2、圆周角定理的推论: 推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧是等弧; 即:在⊙中,∵、都是所对的圆周角 ∴ 推论2:半圆或直径所对的圆周角是直角;圆周角是直角所对的弧是半圆,所对的弦是直径。 即:在⊙中,∵是直径 或∵ ∴ ∴是直径 推论3:若三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。 即:在△中,∵ ∴△是直角三角形或 注:此推论实是初二年级几何中矩形的推论:在直角三角形中斜边上的中线等于斜边的一半的逆定理。 【例1】用直角钢尺检查某一工件是否恰好是半圆环形,根据图形3-3-19所表示的情形,四个工件哪一个肯定是半圆环形? 【例2】如图,已知⊙O中,AB为直径,AB=10cm,弦AC=6cm,∠ACB的平分线交⊙O于D,求BC、AD和BD的长. 【例3】如图所示,已知AB为⊙O的直径,AC为弦,OD∥BC,交AC于D,BC=4cm. (1)求证:AC⊥OD; (2)求OD的长; (3)若2sinA-1=0,求⊙O的直径. 【例4】四边形ABCD中,AB∥DC,BC=b,AB=AC=AD=a,如图,求BD的长. 【例5】如图1,AB是半⊙O的直径,过A、B两点作半⊙O的弦,当两弦交点恰好落在半⊙O上C点时,则有AC·AC+BC·BC=AB2. (1)如图2,若两弦交于点P在半⊙O内,则AP·AC+BP·BD=AB2是否成立?请说明理由. (2)如图3,若两弦AC、BD的延长线交于P点,则AB2= .参照(1)填写相应结论,并证明你填写结论的正确性. 八、圆内接四边形 圆的内接四边形定理:圆的内接四边形的对角互补,外角等于它的内对角。 即:在⊙中, ∵四边形是内接四边形 ∴ 例1、如图7-107,⊙O中,两弦AB∥CD,M是AB的中点,过M点作弦DE.求证:E,M,O,C四点共圆. 九、切线的性质与判定定理 (1)切线的判定定理:过半径外端且垂直于半径的直线是切线; 两个条件:过半径外端且垂直半径,二者缺一不可 即:∵且过半径外端 ∴是⊙的切线 (2)性质定理:切线垂直于过切点的半径(如上图) 推论1:过圆心垂直于切线的直线必过切点。 推论2:过切点垂直于切线的直线必过圆心。 以上三个定理及推论也称二推一定理: 即:①过圆心;②过切点;③垂直切线,三个条件中知道其中两个条件就能推出最后一个。 十、切线长定理 切线长定理: 从圆外一点引圆的两条切线,它们的切线长相等,这点和圆心的连线平分两条切线的夹角。 即:∵、是的两条切线 ∴ 平分 利用切线性质计算线段的长度 例1:如图,已知:AB是⊙O的直径,P为延长线上的一点,PC切⊙O于C,CD⊥AB于D,又PC=4,⊙O的半径为3.求:OD的长. 利用切线性质计算角的度数 例2:如图,已知:AB是⊙O的直径,CD切⊙O于C,AE⊥CD于E,BC的延长线与AE的延长线交于F,且AF=BF.求:∠A的度数. 利用切线性质证明角相等 例3:如图,已知:AB为⊙O的直径,过A作弦AC、AD,并延长与过B的切线交于M、N.求证:∠MCN=∠MDN. 利用切线性质证线段相等 例4:如图,已知:AB是⊙O直径,CO⊥AB,CD切⊙O于D,AD交CO于E.求证:CD=CE. 利用切线性质证两直线垂直 例5:如图,已知:△ABC中,AB=AC,以AB为直径作⊙O,交BC于D,DE切⊙O于D,交AC于E.求证:DE⊥AC. 十一、圆幂定理 (1)相交弦定理:圆内两弦相交,交点分得的两条线段的乘积相等。 即:在⊙中,∵弦、相交于点, ∴ (2)推论:如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项。 即:在⊙中,∵直径, ∴ (3)切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项。 即:在⊙中,∵是切线,是割线 ∴ (4)割线定理:从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等(如上图)。 即:在⊙中,∵、是割线 ∴ 例1.如图1,正方形ABCD的边长为1,以BC为直径。在正方形内作半圆O,过A作半圆切线,切点为F,交CD于E,求DE:AE的值。 例2.⊙O中的两条弦AB与CD相交于E,若AE=6cm,BE=2cm,CD=7cm,那么CE=_________cm。 图2 例3.如图3,P是⊙O外一点,PC切⊙O于点C,PAB是⊙O的割线,交⊙O于A、B两点,如果PA:PB=1:4,PC=12cm,⊙O的半径为10cm,则圆心O到AB的距离是___________cm。 图3 例4.如图4,AB为⊙O的直径,过B点作⊙O的切线BC,OC交⊙O于点E,AE的延长线交BC于点D,(1)求证:;(2)若AB=BC=2厘米,求CE、CD的长。 图4 例5.如图5,PA、PC切⊙O于A、C,PDB为割线。求证:AD·BC=CD·AB 图5 例6.如图6,在直角三角形ABC中,∠A=90°,以AB边为直径作⊙O,交斜边BC于点D,过D点作⊙O的切线交AC于E。 图6 求证:BC=2OE。 十二、两圆公共弦定理 圆公共弦定理:两圆圆心的连线垂直并且平分这两个圆的的公共弦。 如图:垂直平分。 即:∵⊙、⊙相交于、两点 ∴垂直平分 十三、圆的公切线 两圆公切线长的计算公式: (1)公切线长:中,; (2)外公切线长:是半径之差; 内公切线长:是半径之和 。 十四、圆内正多边形的计算 (1)正三角形 在⊙中△是正三角形,有关计算在中进行:; (2)正四边形 同理,四边形的有关计算在中进行,: (3)正六边形 同理,六边形的有关计算在中进行,. 十五、扇形、圆柱和圆锥的相关计算公式 1、扇形:(1)弧长公式:; (2)扇形面积公式: :圆心角 :扇形多对应的圆的半径 :扇形弧长 :扇形面积 2、圆柱: (1)圆柱侧面展开图 = (2)圆柱的体积: 3 .圆锥侧面展开图 (1)= (2)圆锥的体积: 只供学习与交流- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 初三 数学 知识点 复习 专题 经典 讲解 学习
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【a199****6536】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【a199****6536】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【a199****6536】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【a199****6536】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文