苏教版六年级数学下册知识点总结教程文件.doc
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 苏教版 六年级 数学 下册 知识点 总结 教程 文件
- 资源描述:
-
苏教版六年级下册单元知识点 第一单元 百分数的应用 知识点一、“求数A比数B多(少)百分之几?”的实际问题 分解题目:已知条件:数A、数B; 求:两数差的百分数 解题方法:(大数-小数)÷单位“1” 例1:东山村去年原计划造林16公顷,实际造林20公顷。实际造林比原计划多百分之几? 解: (实际造林-原计划造林)÷原计划造林 ( 20 - 16 ) ÷ 16 =25% 答:实际造林比原计划多25%。 例2:东山村去年原计划造林16公顷,实际造林20公顷。原计划造林比实际少百分之几? 解: (实际造林-原计划造林)÷实际造林 ( 20 - 16 ) ÷ 20 =20% 答:实际造林比原计划少20%。 知识点二、“数A比数B多(少)百分之几,求数A是多少?”的实际问题 分解题目:已知条件:数B、 两数和(差)的百分数 求:数A(非单位“1”) 解题方法:数B×(1+百分数)——两数和的方法 数B×(1-百分数)——两数差的方法 例1:东山村去年原计划造林16公顷,实际造林比原计划多25%,实际造林多少公顷? 解析:从题目“实际造林比原计划多25%”中,可以看出“数A”是“实际造林”,“数B”是“原计划造林”,“两数和的百分数”是“25%”。根据公式可以得到: 数B×(1+百分数) 16 ×(1+25%) =20(公顷) 答:实际造林20公顷。 例2:东山村去年实际造林20公顷,原计划造林比实际少20%,原计划造林多少公顷? 解析:从题目“原计划造林比实际少20%”中,可以看出“数A”是“原计划造林”,“数B”是“实际造林”,“两数差的百分数”是“20%”。根据公式可以得到: 数B×(1-百分数) 20 ×(1-20%) =16(公顷) 答:原计划造林16公顷。 知识点三、“数A比数B多(少)百分之几,求数B是多少?” 分解题目:已知条件:数A、两数和(差)的百分数 求:数B(单位“1”) 解题方法:数A÷(1+百分数)——两数和的方法 数A÷(1-百分数)——两数差的方法 例1:东山村去年原计划造林16公顷,比实际造林少20%,实际造林多少公顷? 解析:从题目“比实际造林多25%”中,可以看出“数A”是“原计划造林”,在“比”之前省略了,“数B”是“实际造林”,“两数差的百分数”是“20%”。根据公式可以得到: 一个数÷(1-百分数) 16 ÷(1-20%) =20(公顷) 答:实际造林20公顷。 例2:东山村去年实际造林20公顷,比原计划多25%,原计划造林多少公顷? 解析:从题目“比原计划多25%”中,可以看出“数A”是“实际造林”,在“比”之前省略了,“数B”是“原计划造林”,“两数和的百分数”是“25%”。根据公式可以得到: 一个数÷(1+百分数) 20 ÷(1+25%) =16(公顷) 答:原计划造林16公顷。 知识点四、应纳税额的计算方法 分解题目:求应纳税额实际上就是求一个数的百分之几是多少,用乘法计算。 解题方法:应纳税额=收入额×税率 例1:星光书店去年十二月份的营业额是60万元。如果按营业额的5%缴纳营业税,这个书店去年十二月份应缴纳营业税多少万元? 解:收入额×税率=应纳税额 60 ×5% = 3(万元) 答:应缴纳营业税3万元。 知识点五:利息的计算方法 名词解释:①本金:存入银行的钱。 ②利息(应得利息):取款时银行除还给本金外,另外付给的钱。 ③利率:利息占本金的百分率。按年计算的叫做年利率;按月计算的叫做月利率。 ④利息税:利息所征收的个人所得税,一般是利息税率的5%。 ⑤纯利息/实得利息:扣除利息税后的利息。 解题方法:①利息=本金×利率×时间 ②纯利息=利息×(1-5%)=本金×利率×时间×95% 或者=利息-利息税 例1:2007年8月20日,一年定期存款的年利率是3.87%。李爷爷把50000元存入银行,一年以后按5%缴纳利息税,应缴纳利息税多少元? 解析:本题求利息税。题目中已知利息税率5%,还告诉了本金、年利率和存款时间,所以根据公式: 应缴纳利息税=利息×利息税率=本金×年利率×存款时间×利息税率 50000×3.87%×1 ×5% =96.75元 答:应缴纳利息税96.75元。 知识点六:折扣(成数)计算方法 名词解释:①折扣:商店经常把商品减价,按原价的百分之几出售,通常称为打折出售,简称为折扣。 ②折扣与百分数的关系:打几折就是按原价的百分之几出售或说降价了(1-百分之几)出售。 ③标价:商品摆放柜台出售的价格,包括成本和利润两部分。 ④售价:商品的成交价格。售价经常等于或小于标价。 ⑤成数:表示一个数是另一个数十分之几的数。通常用在工农生产中表示生产的增长状况。几成就是十分之几。“二成”就是十分之二,就是百分之二十。 ⑥利润率:利润占成本的百分率。 解题方法:①售价(现价)=标价(原价)×折扣 折扣=售价(现价)÷标价(原价) 标价(原价)=售价(现价)÷折扣 ②利润率=利润÷成本 例1:一本书原价是30元,现在明明少花9元买到这本书,现在这本书打几折销售? 解析:本题求折扣,就要知道现价和原价。原价是30元,现价是30-9=21元。根据公式: 折扣=现价÷原价 21 ÷30 =70%=七折 答:现在这本书打七折销售。 知识点七:列方程解决稍复杂的百分数实际问题的解题方法 步骤:①审题:1,读懂题;2,列出等量关系式 ②设未知数,列方程 ③解方程,检验并写答。 解题方法:本单元的应用题一般设单位“1”为未知数。 例1:一个机械加工厂,十月份生产零件2000个,比原计划多生产25%,多生产多少个零件? 解析:本题中的单位“1”是原计划生产的零件,所以十月份生产零件比原计划多25%x个。 等量关系:原计划生产的零件+比原计划多生产的零件=十月份生产的零件 设:原计划生产零件x个。 X+25%X=2000 X=1600 1600×25%=400个 答:多生产400个零件。 第二单元 圆柱和圆锥 知识点一:圆柱、圆锥的认识 相关概念:①圆柱由一个上底面、一个下底面和一个侧面组成。上下底面是两个完全相同的圆形;侧面是一个曲面。 ②圆柱的高:上下底面之间的距离。圆柱有无数条高,每条高相等。 ③圆锥由一个底面和一个侧面组成。底面是一个圆形;侧面是一个曲面。 ④圆柱的高:圆锥的定点到底面圆心的距离。圆锥只有一条高。 知识点二:圆柱侧面积的计算方法 理解掌握:圆柱的侧面展开图:有可能是长方形,也有可能是正方形。 ①假如是长方形,那么长方形的长a,就是圆柱底面的周长C,宽b就是圆柱的高h。 长方形的面积S=a×b=C×h=2πr×h=2πrh,就是圆柱的侧面积。 ②假如是正方形,那么正方形的边长a既等于圆柱底面的周长C,也等于圆柱的高h,也就是说底面周长和高相等。 正方形的面积S=a×a=C×h=2πr×h=2πrh,就是圆柱的侧面积。 所以圆柱的侧面积公式=Ch或者=2πrh或者=πdh 知识点三:圆柱表面积的计算方法 理解掌握:圆柱的表面积由一个侧面加上两个底面组成,计算方法是S表=S侧+2S底,因为S侧=Ch,S底=πr2, 所以S表=Ch+2πr2 =2πrh+2πr2 用乘法分配率得圆柱的表面积公式 =2π(rh+r2) 例1:一个圆柱形的罐头盒,高是12.56厘米,它的侧面展开图是一个正方形,做一个这样的罐头盒需要多少铁皮? 解析:本题中罐头盒的侧面展开图是正方形,说明圆柱的底面周长和高相等,都等于12.56厘米,可以根据圆的周长公式C=2πr,把r先求出,最后再用圆柱的表面积公式。 解:12.56÷3.14÷2=2厘米 2×π×(2×12.56+22)=182.8736平方厘米 答:做一个这样的罐头盒需要182.8736平方厘米铁皮。 知识点四:圆柱体积的计算方法 理解掌握:利用我们以前学过的长方体的体积公式V长方体=S底×h,可以得到圆柱的体积公式V圆柱= S底×h,长方体的底面积是长方形或正方形,而圆柱的底面积是圆。 相关公式:①已知半径和高,V圆柱=πr2h ②已知直径和高,V圆柱=π(d÷2)2h ③已知周长和高,V圆柱=π(C÷2π)2h 难点解析:把圆柱的底面平均分成n份,切开后平成一个近似的长方体。 得到的结论:圆柱的底面周长等于长方体的两条长的和; 圆柱的半径等于长方体的宽; 圆柱的高等于长方体的高; 圆柱的体积等于长方体的体积; ★圆柱的侧面=长方体的前、后两个面积的和(长×高);圆柱的上、下底面和等于长方体的上、下底面和(长×宽),所以圆柱的表面积比长方体的表面积少左右两个侧面(宽×高)。 知识点五:圆锥体积的计算方法 理解掌握:根据书本上的实验可以得到结论:等底等高的圆柱和圆锥,圆柱的体积是圆锥的3倍,或者说圆锥的体积 是圆柱的三分之一。用字母表示为V圆柱=3V圆锥或者V圆锥=1/3V圆柱。 相关公式:只需要在圆柱的相关公式前面乘以三分之一。 ①已知半径和高,V圆锥=1/3πr2h ②已知直径和高,V圆锥=1/3π(d÷2)2h ③已知周长和高,V圆锥=1/3π(C÷2π)2h 重点解析:在一个圆柱里面挖一个最大的圆锥,圆锥的体积和剩余部分的体积比是1:2。 例1:工地上的沙堆成近似的圆锥形,底面周长是12.56米,高是1.5米,每立方米沙子约重1.7吨,这堆沙子共重多少吨? 解析:根据题目中的条件,可以用公式V圆锥=1/3π(C÷2π)2h 1/3×3.14×(12.56÷2÷3.14)2×1.5=6.28立方米 6.28×1.7=10.676吨 答:这堆沙子共重10.676吨。 知识点七:圆柱和圆锥的横截面 理解掌握:★圆柱横截面的分割方法: ① 按底面的直径分割,这样分割的横截面是长方形或者是正方形,如果横截面是正方形说明圆柱的底面直径和高相等。 ② 按平行于底面分割,这样分割的横截面是圆。 圆锥横截面的分割方法: ① 按圆锥的高分割,这样分割的横截面是等腰三角形。 ② 按平行于底面分割,这样分割的横截面是圆。 第三单元 比例 知识点一:图像的放大和缩小 理解掌握:把图形按1:n的比缩小,就是把图形的每条边都放大到原来的1/n; 把图形按n:1的比放大,就是把图形的每条边都缩小到原来的n倍。 知识点二:比例的意义 理解掌握:1、比例:表示两个比相等的式子。任何一个比例都是由两个内项和两个外项组成。 2、比和比例的区别:(1)比是表示两个数相除的关系。比例是表示两个比相等的关系。 (2)比由两项组成(前项、后项)。比例由四项组成(两个内项、两个外项)。 知识点三:应用比的含义组成比例 理解掌握:判断两个比能否组成比例,关键要看它们的比值是否相等。若比值相等,则能组成比例;若比值不想等,则不能组成比例。 知识点四:比例的基本性质 理解掌握:比例的基本性质:在比例里,两个外项的积等于两个内项的积。 若a:b=c:d,那么ad=bc。 若用分数表示比a/b=c/d,那么ad=bc。------十字交叉法 知识点五:解比例 理解掌握:解比例的依据是比例的基本性质,已知比例中的任意三项,就可以求出另外一项。 例1: 5:8=x:16 1/9 : 1/4 =x:18 8x=5×16 4:9 =x:18 x=10 9x =4×18 x =8 知识点六:用比例解应用题 解题方法:审题列出比例等量关系式------设未知数列出比例方程------解比例并检验写答 例1:A、B两种商品的价格比是5:3,如果它们的价格分别上涨了420元后,价格比是6:5。那么A商品原来多少元? 解析:本题中告诉我们A、B两种商品涨价前后的价格比,利用比例的基本性质可以得到等量关系是: (A商品原来的价格+420元):(B商品原来的价格+420元)=6:5 利用比例基本性质,设A商品原来的价格是5x元,B商品原来的价格是3x元 列出比例方程(5x+420):(3x+420)=6:5 (5x+420)×5 =(3x+420)×6------比例基本性质 25x+2100 =18x+2520------乘法分配率 25x-18x =2520-2100------等式基本性质 x =60 5×60=300元 答:A商品原来300元。 知识点七:比例尺的意义 理解掌握:比例尺就是图上距离与实际距离的比。 图上距离是比的前项,实际距离是比的后项,比例尺是一个最简单的整数比。 相关公式:(1)比例尺=图上距离÷实际距离 (2)图上距离=比例尺×实际距离 (3)实际距离=图上距离÷比例尺 知识点八:比例尺的应用 理解掌握:(1)注意比例尺的前后单位是否统一。一般比例尺的单位是厘米,而题目往往会给出以千米做单位的比例尺。如1:40千米=1:4000000厘米 (2) 因为图上距离是比例的前项,实际距离是比例的后项,所以当比例尺的图上距离大于实际距离时,表示设计图纸大于实际物体,如比例尺是10:1(经常在精密仪器、化学领域中出现);当比例尺的图上距离小于实际距离时,表示设计图纸小于实际物体,如比例尺1:100(比如设计一栋教学楼)。 第四单元 确定位置 知识点一、根据方向和距离确定物体的位置 理解掌握:(1)用字母表示方向。S表示“南”,W表示“西”,E表示“东”,N表示“北”。 (2)理解“X偏X若干度”,如南偏西15°,表示由南面向西面旋转15°的方向;西偏南15°,表示有西面向南面旋转15°的方向。这两个方向一样吗?请同学们仔细考虑一下?如果不一样,那么应该这么说呢?南偏西15°= 偏 ° ;西偏南15°= 偏 °。 (3)如何来用方向和距离确定位置呢? 答:一找观察地点和实际地点,二看实际地点在观察地点的什么方向上,三量出观察地点和实际地点的距离,四标注要清楚。 知识点二、根据平面图用方向和距离描述简单的行走路线 解题方法:描述行走路线的方法:按行走路线,确定观测点及行走方向和路程,用“先……然后……再”等词语,按顺序叙述。 第五单元 正比例和反比例 知识点一、正比例的意义及应用 理解掌握:(1)正比例的定义:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量相对应的两个数的比值(在除法中是叫做商)一定,那么这两个量叫做成正比例的量,它们的关系叫做成正比例关系。 (2)如果用字母x和y分别表示两种相关的量,用k表示它们的比值(一定),正比例关系式可用x/y=k。 (3)判断两种量是否成正比例的应用方法:1、判断两个是否相关联; 2、判断这两个量的比值是否一定,比值一定就成正比例关系;反之不成正比例关系。(简说:用除法,商一定,成正比) 知识点二、正比例的图像 理解掌握:正比例图像是一条直线。从图像中,可以直观看到两种量的变化情况,由一个量的值可以直接找到对应的 另一个量的值。 知识点三:反比例的意义及应用 理解掌握:(1)反比例的定义:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量相对应的两个数的积一定,那么这两个量叫做成反比例的量,它们的关系叫做成反比例关系。 (2)如果用字母x和y分别表示两种相关的量,用k表示它们的比值(一定),反比例关系式可用x×y=k。 (3)判断两种量是否成反比例的应用方法:1、判断两个是否相关联; 2、判断这两个量的积是否一定,积一定就成反比例关系;反之不成反比例关系。(简说:用乘法,积一定,成反比) 知识点四:用正反比例解应用题 解题方法:(1)判断题目中相关联的量成什么关系,列出等量关系式; (2)设未知数,列方程; (3)解方程并检验写答。 例1:一部机器上有两个互相咬合的齿轮,主动轮有80个齿,每分钟转90转。从动轮有48个齿,每分钟转多少转? 解析:先判断齿数和转数成反比例关系,理由是齿数×转数=总齿数(一定)。 等量关系是:主动轮齿数×主动轮转数=从动轮齿数×从动轮转数 再设从动轮每分钟转x转。 48×x=80×90 x=150 答:从动轮每分钟转150转。展开阅读全文
咨信网温馨提示:1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。




苏教版六年级数学下册知识点总结教程文件.doc



实名认证













自信AI助手
















微信客服
客服QQ
发送邮件
意见反馈



链接地址:https://www.zixin.com.cn/doc/3710462.html