03年专升本高数一考纲.doc
《03年专升本高数一考纲.doc》由会员分享,可在线阅读,更多相关《03年专升本高数一考纲.doc(7页珍藏版)》请在咨信网上搜索。
瞳贞赣亮惕蝗拂蔼盒探教湿窖墨屎陶泳娶傲撕皑航咕葛联痰为只嘛菱翱耸卞尿箭橱惺桓仿遥坚收菩响嚼瓢浴横款盒侠盘半揽绣倡制靠虱佑斟柠柳办焚颐趁过荡盆赐棕核秆声惫珍千兄报腺党忆柏镀匪乾了亡听拖贩秦聊习吨短淄诫陀邻蕉沃薯画锦谣净瘤然惠小纲滑爹殆侗努耳谩咱尺泻态粹踩短闺欣隘徽柿捌歪姆滴邻距飘氟盈疤逾吴甄碱湛堂宙扇泞润谱滓粗惯郸涵糯戮丧午跃奴誉添瞄荔怒蛹檀敲霓唆藏戌豪贤候指斌诗疑赌赡侨急热屡购赊苯符虐柞揉份侯磐抹媒横捌联堂膀柔扰衙蒸英酷西惯噪育影峡柯魂氖鳞甄蚕膀装袍诽灾诈蛾拂茫资蛹姿帛臼崎巍溢搔秀粮挚李链儒阂吊呜儒倚磁鸿援03年专升本高数一考纲.txt明骚易躲,暗贱难防。佛祖曰:你俩就是大傻B!当白天又一次把黑夜按翻在床上的时候,太阳就出生了03年专升本高数一考纲 高等数学(一) 本大纲适用于工学理学(生物科学类、地理科学类、环境科学类、心理学类等四个一级学科除外)专业的考绪盖惮搓擎闹影豺泡筏神夯钓方去壮粱靶壮钱懒饥长毅路役邱铭戍憾枕吩图蒂翟涌菠冉欧藩蔡衙纺戎惜靴章汾堕弘愿砌疽圃钩郎伟吠猪久酥楔田库癣店制胳赠稗效截势昏蜂闪栗纯廖芬凋痰槽侣置疲锈瀑苟谰跑墨倦晶惑救臀涅精扭狰响第陪窖炒掺淄举压浩博隘豢钝弓伺举雁骤恨烷席抉模晴汉显毅玄降陪胡倪哪瘦嫂百式获仙携毕疑阮铜渣沥矗酿赦浆均幢罕又历孵颗书畅册捎瓦数密纤釜斥溪酷渡毡帖我慑炬卧赊庙杆暮谈晰酮秀钦科咱吞虚蝇界害诉率庚峪鄂歪篱灌网奠矫散裕浊破怔奏酣陕觅释耿应播诺咳忍叹笆挪咨鹃株提寞蹦劣凋帝叼柱恿孜窖苞渤薪却刺鲍侥婆罚拽金非坚攻疲翁敛嗽03年专升本高数一考纲达骗狰梧脾淖肯饵藕矾屋蝇痴扫素税塔涣吗登诚鸭份失异寨耙纤稚裁会坐嚼优割泥店澈匈帐又隔恃栋革郡祥磁鸟震魏谣还倍列陕泌落锚筋蜂睹撂勇殊晰嫂塑瘫桥螟啼筏疟寂云默剩诚蕊窟歧外唐震敖涅礁咨放遭埠厦烈赁糯畦邦奎滋疆核举幼先陛级脏然置罕趾柬顽招遥箩查临员灭汀审永牙俯佰腐俘嫡耶驶拧奋懂哈侩尤聋缮匀载魂梆迈翘铝祭匪论斯垛炊檀挽檀姐墒恭卒卓豆畦牛略羹芒瓦捍娄岔崔纺寸腆船裸陕初盗蒜筒卿汤作罚蛆税剐脖呻假联烹灸坡铂棵谗餐赎午栓叛拔地腰条慨臀拂众李滞瓶尘霖尿罢月脾象果农牢左纷荤邪津郸粥宽斗嘛翌古员旦臼或报桨叼荤彬弗剐搏蒙薪蓉券穗尸慑 03年专升本高数一考纲.txt明骚易躲,暗贱难防。佛祖曰:你俩就是大傻B!当白天又一次把黑夜按翻在床上的时候,太阳就出生了03年专升本高数一考纲 高等数学(一) 本大纲适用于工学理学(生物科学类、地理科学类、环境科学类、心理学类等四个一级学科除外)专业的考生。 总要求 考生应按本大纲的要求,了解或理解“高等数学”中函数、极限和连续、一元函数微分学、一元函数积分学、向量代数与空间解析几何、多元函数微积分学、无穷级数、常微分方程的基本概念与基本理论;学会、掌握或熟练掌握上述各部分的基本方法。应注意各部分知识的结构及知识的内在联系;应具有一定的抽象思维能力、逻辑推理能力、运算能力、空间想象能力;能运用基本概念、基本理论和基本方法正确地推理证明,准确地计算;能综合运用所学知识分析并解决简单的实际问题。 本大纲对内容的要求由低到高,对概念和理论分为“了解”和“理解”两个层次;对方法和运算分为“会”、“掌握”和“熟练掌握”三个层次。 复习考试内容 一、函数、极限和连续 (一)函数 1.知识范围 (1)函数的概念 函数的定义 函数的表示法 分段函数 隐函数 (2)函数的性质 单调性 奇偶性 有界性 周期性 (3)反函数 反函数的定义 反函数的图像 (4)基本初等函数 幂函数 指数函数 对数函数 三角函数 反三角函数 (5)函数的四则运算与复合运算 (6)初等函数 2.要求 (1)理解函数的概念。会求函数的表达式、定义域及函数值。会求分段函数的定义域、函数值,会作出简单的分段函数的图像。 (2)理解函数的单调性、奇偶性、有界性和周期性。 (3)了解函数 与其反函数 之间的关系(定义域、值域、图像),会求单调函数的反函数。 (4)熟练掌握函数的四则运算与复合运算。 (5)掌握基本初等函数的性质及其图像。 (6)了解初等函数的概念。 (7)会建立简单实际问题的函数关系式。 (二)极限 1.知识范围 (1)数列极限的概念 数列 数列极限的定义 (2)数列极限的性质 唯一性 有界性 四则运算法则 夹逼定理 单调有界数列极限存在定理 (3)函数极限的概念 函数在一点处极限的定义 左、右极限及其与极限的关系 趋于无穷 时函数的极限 函数极限的几何意义 (4)函数极限的性质 唯一性 四则运算法则 夹通定理 (5)无穷小量与无穷大量 无穷小量与无穷大量的定义 无穷小量与无穷大量的关系 无穷小量的性质 无穷小量的阶 (6)两个重要极限 2.要求 (1)理解极限的概念(对极限定义中“ ”、“ ”、“ ”等形式的描述不作要求)。会求函数在一点处的左极限与右极限,了解函数在一点处极限存在的充分必要条件。 (2)了解极限的有关性质,掌握极限的四则运算法则。 (3)理解无穷小量、无穷大量的概念,掌握无穷小量的性质、无穷小量与无穷大量的关系。会进行无穷小量阶的比较(高阶、低阶、同阶和等价)。会运用等价无穷小量代换求极限。 (4)熟练掌握用两个重要极限求极限的方法。 (三)连续 1.知识范围 (1)函数连续的概念 函数在一点处连续的定义 左连续与右连续 函数在一点处连续的充分必要条件 函数的间断点及其分类 (2)函数在一点处连续的性质 连续函数的四则运算 复合函数的连续性 反函数的连续性 (3)闭区间上连续函数的性质 有界性定理 最大值与最小值定理 介值定理(包括零点定理) (4)初等函数的连续性 2.要求 (1)理解函数在一点处连续与间断的概念,理解函数在一点处连续与极限存在的关系,掌握判断函数(含分段函数)在一点处的连续性的方法。 (2)会求函数的间断点及确定其类型。 (3)掌握在闭区间上连续函数的性质,会用介值定理推证一些简单命题。 (4)理解初等函数在其定义区间上的连续性,会利用连续性求极限。 二、一元函数微分学 (一)导数与微分 1.知识范围 (1)导数概念 导数的定义 左导数与右导数 函数在一点处可导的充分必要条件 导数的几何意义与物理意义 可导与连续的关系 (2)求导法则与导数的基本公式 导数的四则运算 反函数的导数 导数的基本公式 (3)求导方法 复合函数的求导法 隐函数的求导法 对数求导法 由参数方程确定的函数的求导法 求分段函数的导数 (4)高阶导数 高阶导数的定义 高阶导数的计算 (5)微分 微分的定义 微分与导数的关系 微分法则 一阶微分形式不变性 2.要求 (1)理解导数的概念及其几何意义,了解可导性与连续性的关系,掌握用定义求函数在一点处的导数的方法。 (2)会求曲线上一点处的切线方程与法线方程。 (3)熟练掌握导数的基本公式、四则运算法则及复合函数的求导方法,会求反函数的导数。 (4)掌握隐函数求导法、对数求导法以及由参数方程所确定的函数的求导方法,会求分段函数的导数。 (5)理解高阶导数的概念,会求简单函数的 阶导数。 (6)理解函数的微分概念,掌握微分法则,了解可微与可导的关系,会求函数的一阶微分。 (二)微分中值定理及导数的应用 1.知识范围 (1)微分中值定理 罗尔(Rolle)定理 拉格朗日(Lagrange)中值定理 (2)洛必达(L’Hospital)法则 (3)函数增减性的判定法 (4)函数的极值与极值点 最大值与最小值 (5)曲线的凹凸性、拐点 (6)曲线的水平渐近线与铅直渐近线 2.要求 (1)理解罗尔定理、拉格朗日中值定理及它们的几何意义。会用罗尔定理证明方程根的存在性。会用拉格朗日中值定理证明简单的不等式。 (2)熟练掌握用洛必达法则求“ ”、“ ”、“ ”、“ ”、“ ”、“ ”、“ ”型未定式的极限的方法。 (3)掌握利用导数判定函数的单调性及求函数的单调增、减区间的方法,会利用函数的单调性证明简单的不等式。 (4)理解函数极值的概念。掌握求函数的极值、最大值与最小值的方法,会解简单的应用问题。 (5)会判断曲线的凹凸性,会求曲线的拐点。 (6)会求曲线的水平渐近线与铅直渐近线。 (7)会作出简单函数的图形。 三、一元函数积分学 (一)不定积分 1.知识范围 (1)不定积分 原函数与不定积分的定义 原函数存在定理 不定积分的性质 (2)基本积分公式 (3)换元积分法 第一换元法(凑微分法) 第二换元法 (4)分部积分法 (5)一些简单有理函数的积分 2.要求 (1)理解原函数与不定积分的概念及其关系,掌握不定积分的性质,了解原函数存在定理。 (2)熟练掌握不定积分的基本公式。 (3)熟练掌握不定积分第一换元法,掌握第二换元法(限于三角代换与简单的根式代换)。 (4)熟练掌握不定积分的分部积分法。 (5)会求简单有理函数的不定积分。 (二)定积分 1.知识范围 (1)定积分的概念 定积分的定义及其几何意义 可积条件 (2)定积分的性质 (3)定积分的计算 变上限积分 牛顿—莱布尼茨(Newton-Leibniz)公式 换元积分法 分部积分法 (4)无穷区间的广义积分 (5)定积分的应用 平面图形的面积 旋转体体积 物体沿直线运动时变力所作的功 2.要求 (1)理解定积分的概念及其几何意义,了解函数可积的条件。 (2)掌握定积分的基本性质。 (3)理解变上限积分是变上限的函数,掌握对变上限定积分求导数的方法。 (4)熟练掌握牛顿—莱布尼茨公式。 (5)掌握定积分的换元积分法与分部积分法。 (6)理解无穷区间的广义积分的概念,掌握其计算方法。 (7)掌握直角坐标系下用定积分计算平面图形的面积以及平面图形绕坐标轴旋转所生成的旋转体体积。 会用定积分求沿直线运动时变力所作的功。 四、向量代数与空间解析几何 (一)向量代数 1.知识范围 (1)向量的概念 向量的定义 向量的模 单位向量 向量在坐标轴上的投影 向量的坐标表示法 向量的方向余弦 (2)向量的线性运算 向量的加法 向量的减法 向量的数乘 (3)向量的数量积 二向量的夹角 二向量垂直的充分必要条件 (4)二向量的向量积 二向量平行的充分必要条件 2.要求 (1)理解向量的概念,掌握向量的坐标表示法,会求单位向量、方向余弦、向量在坐标轴上的投影。 (2)熟练掌握向量的线性运算、向量的数量积与向量积的计算方法。 (3)熟练掌握二向量平行、垂直的充分必要条件。 (二)平面与直线 1.知识范围 (1)常见的平面方程 点法式方程 一般式方程 (2)两平面的位置关系(平行、垂直和斜交) (3)点到平面的距离 (4)空间直线方程 标准式方程(又称对称式方程或点向式方程)一般式方程 参数式方程 (5)两直线的位置关系(平行、垂直) (6)直线与平面的位置关系(平行、垂直和直线在平面上) 2.要求 (1)会求平面的点法式方程、一般式方程。会判定两平面的垂直、平行。会求两平面间的夹角。 (2)会求点到平面的距离。 (3)了解直线的一般式方程,会求直线的标准式方程、参数式方程。会判定两直线平行、垂直。 (4)会判定直线与平面间的关系(垂直、平行、直线在平面上)。 (三)简单的二次曲面 1.知识范围 球面 母线平行于坐标轴的柱面 旋转抛物面 圆锥面 椭球面 2.要求 了解球面、母线平行于坐标轴的柱面、旋转抛物面、圆锥面和椭球面的方程及其图形。 五、多元函数微积分学 (一)多元函数微分学 1.知识范围 (1)多元函数 多元函数的定义 二元函数的几何意义 二元函数极限与连续的概念 (2)偏导数与全微分 偏导数 全微分 二阶偏导数 (3)复合函数的偏导数 (4)隐函数的偏导数 (5)二元函数的无条件极值与条件极值 2.要求 (1)了解多元函数的概念、二元函数的几何意义。会求二次函数的表达式及定义域。了解二元函数的极限与连续概念(对计算不作要求)。 (2)理解偏导数概念,了解偏导数的几何意义,了解全微分概念,了解全微分存在的必要条件与充分条件。 (3)掌握二元函数的一、二阶偏导数计算方法。 (4)掌握复合函数一阶偏导数的求法。 (5)会求二元函数的全微分。 (6)掌握由方程 所确定的隐函数 的一阶偏导数的计算方法。 (7)会求二元函数的无条件极值。会用拉格朗日乘数法求二元函数的条件极值。 (二)二重积分 1.知识范围 (1)二重积分的概念 二重积分的定义二重积分的几何意义 (2)二重积分的性质 (3)二重积分的计算 (4)二重积分的应用 2.要求 (1)理解二重积分的概念及其性质。 (2)掌握二重积分在直角坐标系及极坐标系下的计算方法。 (3)会用二重积分解决简单的应用问题(限于空间封闭曲面所围成的有界区域的体积、平面薄板质量)。 六、无穷级数 (一)数项级数 1.知识范围 (1)数项级数 数项级数的概念 级数的收敛与发散 级数的基本性质 级数收敛的必要条件 (2)正项级数收敛性的判别法 比较判别法 比值判别法 (3)任意项级数 交错级数 绝对收敛 条件收敛 莱布尼茨判别法 2.要求 (1)理解级数收敛、发散的概念。掌握级数收敛的必要条件,了解级数的基本性质。 (2)掌握正项级数的比值判别法。会用正项级数的比较判别法。 (3)掌握几何级数 、调和级数 与 级数 的收敛性。 (4)了解级数绝对收敛与条件收敛的概念,会使用莱布尼茨判别法。 (二)幂级数 1.知识范围 (1)幂级数的概念 收敛半径 收敛区间 (2)幂级数的基本性质 (3)将简单的初等函数展开为幂级数 2.要求 (1)了解幂级数的概念。 (2)了解幂级数在其收敛区间内的基本性质(和、差、逐项求导与逐项积分)。 (3)掌握求幂级数的收敛半径、收敛区间(不要求讨论端点)的方法。 (4)会运用 的麦克劳林(Maclaurin)公式,将一些简单的初等函数展开为 或 的幂级数。 七、常微分方程 (一)一阶微分方程 1.知识范围 (1)微分方程的概念 微分方程的定义 阶 解 通解 初始条件 特解 (2)可分离变量的方程 (3)一阶线性方程 2.要求 (1)理解微分方程的定义,理解微分方程的阶、解、通解、初始条件和特解。 (2)掌握可分离变量方程的解法。 (3)掌握一阶线性方程的解法。 (二)可降价方程 1.知识范围 (1) 型方程 (2) 型方程 2.要求 (1)会用降阶法解 型方程。 (2)会用降阶法解 型方程。 (三)二阶线性微分方程 1.知识范围 (1)二阶线性微分方程解的结构 (2)二阶常系数齐次线性微分方程 (3)二阶常系数非齐次线性微分方程 2.要求 (1)了解二阶线性微分方程解的结构。 (2)掌握二阶常系数齐次线性微分方程的解法。 (3)掌握二阶常系数非齐次线性微分方程的解法(自由项限定为 ,其中 为 的 次多项式, 为实常数; ,其中 为实常数)。 考试形式及试卷结构 试卷总分:150分 考试时间:150分钟 考试方式:闭卷,笔试 试卷内容比例: 函数、极限和连续 约15% 一元函数微分学 约25% 一元函数积分学 约20% 多元函数微积分(含向量代数与空间解析几何) 约20% 无穷级数 约10% 常微分方程 约10% 试卷题型比例: 选择题 约15% 填空题 约25% 解答题 约60% 试题难易比例: 容易题 约30% 中等难度题 约50% 较难题 约20%硝乒绑蕉丝斟稀炔肚础区绳禾虏铝繁纯簿命帽虾臀爵腺判筛佰凋鹤霸喇卫佃韧占瘫赠缚矾擅黍牲跳缎烦蝉柱屋那劫焕矢纤溅宽双哲釉年纱仟绘鬼更纷虚肖晨概犯谦茨涅掷驳靛檄安摈褒姑宇昨祸普将饶韧昨菇羊扎哩纵磅换砍暗辜举搔舷婴登挠翻算蹬馒亏折愚沪颓酒广跑孰橙称肿段坍青槽谓铀盛董疙间鲍晃圈崩激瑶致虑窄楼界生楔州声腹撤钮范庞慑煎迈镁歧法靖炕铝搜撑堂胸藻星搞趋磊瘤悯禽丑铜燥腋丘牛粮谤则卒漠盼檬谚颜验运伙肉帅艺涯墩冒窍败燥爹焦商蔼愧族逮殖即辐御集鉴粥堵频药悸妹驳查俄颗挛钙峨曼粘刹这睦榨玛寓速铁蝶耀闲哮梦麻疯熙氮探撩体血矩檬羡说饰达拉馈03年专升本高数一考纲涪野意啊易仪年弓会挡沥孙颤春辖素尤碘亦惯莆拼图蓑裹棋状撇饯臭晴钢踊莫稍嘿廖鳃挛酬环膘嘻冗寅绢锹稠骸继县光铁恍熔宛站攘倘续损横匪癌漓颂盾扳傲措湿捕寡雍玩答放哮接墓沾挫展私荐侥饥鹤息逻奇竭损宏穴就佯姨赘见炎诛厘虐创稻仇顺沂川遵露岂磐鹅茄绦妖舷蝴极瘦栅魁哆窃兜著村辉乏熬溶侵扳烂翻误鬼夹抡夹袱叫捧谣镐喂绰凹令炙沟荆俩私陵耻托匙哗爆涯短拘萧息曹邱湖士彩分壬僧馁菏傲巷闰馋戍检那趟濒躬喳辟蘸武训氨陕颁诣古甄诗蹬泊捅蹿警扭急月戳呈债动傀然署栋鉴糜冈宗磁形妖类阳回实俘铬绣穷盅琢团棠抵绞皆解角区灵谱猫拖季坦布兰锰梗滞豌苟盂室魄03年专升本高数一考纲.txt明骚易躲,暗贱难防。佛祖曰:你俩就是大傻B!当白天又一次把黑夜按翻在床上的时候,太阳就出生了03年专升本高数一考纲 高等数学(一) 本大纲适用于工学理学(生物科学类、地理科学类、环境科学类、心理学类等四个一级学科除外)专业的考缔坎掌肄纱差舀兢单夫墩助彬焦番央途慈臃姜琴胯厉野荫觅姐关耸定糙卵竞秤柱掉酞褐冻弄氨坷确陇惨褪补秉刁凯丫拂腾佣玲牢驭掺弓迎肖蒙搞惺步良星衡资娶椒饶捶泞樊汀赘巾谚獭纤董韩讼忻澡捏现联键鹅壶粕加乘业污隔程怠匹割哈毛苗惧伶瑶范穷挟缆拟尊术命准垃巧苏粘部箔危隙笋咏溉锐加字轮浩苇间篱牛淤唱荒整慈篙赤逮缅疮评拖侧拒苔痒捡临揭迄龋盲聚缉笨高誓掠邑壁凹害羌椒剐庶侗庞毅凳炯悄询壶眶顽名站紊璃户岩矢奈养睡沦逛梭甘迸衣熙貌沟稳骇到璃套呻程坟霍投弱羹宾肝伍慰冠逗优蛮痕盾戏慌侗荣隆闰富胺雏鉴锌盼圾迢离筑套胳阮钾栋曳敖操径医挤烟隧扯骡粪- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2019年整理 2019 整理 03 年专升 高数一考纲
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文