专升本高数考试大纲(1)资料.doc
《专升本高数考试大纲(1)资料.doc》由会员分享,可在线阅读,更多相关《专升本高数考试大纲(1)资料.doc(4页珍藏版)》请在咨信网上搜索。
此文档仅供收集于网络,如有侵权请联系网站删除 浙江省普通高校“专升本”统考科目: 《高等数学》考试大纲 考试要求 考生应按本大纲的要求,掌握“高等数学”中函数、极限和连续、一元函数微分学、一元函数积分学、无穷级数、常微分方程、向量代数与空间解析几何的基本概念、基本理论和基本方法。考生应注意各部分知识的结构及知识的联系;具有一定的抽象思维能力、逻辑推理能力、运算能力和空间想象能力;能运用基本概念、基本理论和基本方法进行推理、证明和计算;能运用所学知识分析并解决一些简单的实际问题。 考试内容 一、函数、极限和连续 (一)函数 1.理解函数的概念,会求函数的定义域、表达式及函数值,会作出一些简单的分段函数图像。 2.掌握函数的单调性、奇偶性、有界性和周期性。 3.理解函数y =ƒ(x)与其反函数y =ƒ-1(x)之间的关系(定义域、值域、图像),会求单调函数的反函数。 4.掌握函数的四则运算与复合运算; 掌握复合函数的复合过程。 5.掌握基本初等函数的性质及其图像。 6.理解初等函数的概念。 7.会建立一些简单实际问题的函数关系式。 (二)极限 1.理解极限的概念(只要求极限的描述性定义),能根据极限概念描述函数的变化趋势。理解函数在一点处极限存在的充分必要条件,会求函数在一点处的左极限与右极限。 2.理解极限的唯一性、有界性和保号性,掌握极限的四则运算法则。 3.理解无穷小量、无穷大量的概念,掌握无穷小量的性质,无穷小量与无穷大量的关系。会比较无穷小量的阶(高阶、低阶、同阶和等价)。会运用等价无穷小量替换求极限。 4.理解极限存在的两个收敛准则(夹逼准则与单调有界准则),掌握两个重要极限: ,, 并能用这两个重要极限求函数的极限。 (三)连续 1.理解函数在一点处连续的概念,函数在一点处连续与函数在该点处极限存在的关系。会判断分段函数在分段点的连续性。 2.理解函数在一点处间断的概念,会求函数的间断点,并会判断间断点的类型。 3.理解“一切初等函数在其定义区间上都是连续的”,并会利用初等函数的连续性求函数的极限。 4.掌握闭区间上连续函数的性质:最值定理(有界性定理),介值定理(零点存在定理)。会运用介值定理推证一些简单命题。 二、一元函数微分学 (一)导数与微分 1.理解导数的概念及其几何意义,了解左导数与右导数的定义,理解函数的可导性与连续性的关系,会用定义求函数在一点处的导数。 2.会求曲线上一点处的切线方程与法线方程。 3.熟记导数的基本公式,会运用函数的四则运算求导法则,复合函数求导法则和反函数求导法则求导数。会求分段函数的导数。 4.会求隐函数的导数。掌握对数求导法与参数方程求导法。 5.理解高阶导数的概念,会求一些简单的函数的n阶导数。 6.理解函数微分的概念,掌握微分运算法则与一阶微分形式不变性,理解可微与可导的关系,会求函数的一阶微分。 (二)中值定理及导数的应用 1.理解罗尔(Rolle)中值定理、拉格朗日(Lagrange)中值定理及它们的几何意义,理解柯西(Cauchy)中值定理、泰勒(Taylor)中值定理。会用罗尔中值定理证明方程根的存在性。会用拉格朗日中值定理证明一些简单的不等式。 2.掌握洛必达(L’Hospital)法则,会用洛必达法则求“”,“”,“”,“”,“”,“”和“”型未定式的极限。 3.会利用导数判定函数的单调性,会求函数的单调区间,会利用函数的单调性证明一些简单的不等式。 4.理解函数极值的概念,会求函数的极值和最值,会解决一些简单的应用问题。 5.会判定曲线的凹凸性,会求曲线的拐点。 6.会求曲线的渐近线(水平渐近线、垂直渐近线和斜渐近线)。 7.会描绘一些简单的函数的图形。 三、一元函数积分学 (一)不定积分 1.理解原函数与不定积分的概念及其关系,理解原函数存在定理,掌握不定积分的性质。 2.熟记基本不定积分公式。 3.掌握不定积分的第一类换元法(“凑”微分法),第二类换元法(限于三角换元与一些简单的根式换元)。 4.掌握不定积分的分部积分法。 5.会求一些简单的有理函数的不定积分。 (二)定积分 1.理解定积分的概念与几何意义, 掌握定积分的基本性质。 2.理解变限积分函数的概念,掌握变限积分函数求导的方法。 3.掌握牛顿—莱布尼茨(Newton—Leibniz)公式。 4.掌握定积分的换元积分法与分部积分法。 5.理解无穷区间上有界函数的广义积分与有限区间上无界函数的瑕积分的概念,掌握其计算方法。 6.会用定积分计算平面图形的面积以及平面图形绕坐标轴旋转一周所得的旋转体的体积。 四、无穷级数 (一)数项级数 1.理解级数收敛、级数发散的概念和级数的基本性质,掌握级数收敛的必要条件。 2.熟记几何级数,调和级数和p—级数的敛散性。会用正项级数的比较审敛法与比值审敛法判别正项级数的敛散性。 3.理解任意项级数绝对收敛与条件收敛的概念。会用莱布尼茨(Leibnitz) 判别法判别交错级数的敛散性。 (二)幂级数 1.理解幂级数、幂级数收敛及和函数的概念。会求幂级数的收敛半径与收敛区间。 2.掌握幂级数和、差、积的运算。 3.掌握幂级数在其收敛区间内的基本性质:和函数是连续的、和函数可逐项求导及和函数可逐项积分。 4.熟记ex,sinx,cosx,ln(1+x),的麦克劳林(Maclaurin)级数,会将一些简单的初等函数展开为x-x0的幂级数。 五、常微分方程 (一)一阶常微分方程 1.理解常微分方程的概念,理解常微分方程的阶、解、通解、初始条件和特解的概念。 2.掌握可分离变量微分方程与齐次方程的解法。 3.会求解一阶线性微分方程。 (二)二阶常系数线性微分方程 1.理解二阶常系数线性微分方程解的结构。 2.会求解二阶常系数齐次线性微分方程。 3.会求解二阶常系数非齐次线性微分方程(非齐次项限定为(Ⅰ) f(x),其中为x的n次多项式,为实常数;(Ⅱ),其中,为实常数,,分别为x的n次,m次多项式)。 六、向量代数与空间解析几何 (一)向量代数 1.理解向量的概念,掌握向量的表示法,会求向量的模、非零向量的方向余弦和非零向量在轴上的投影。 2.掌握向量的线性运算(加法运算与数量乘法运算),会求向量的数量积与向量积。 3.会求两个非零向量的夹角,掌握两个非零向量平行、垂直的充分必要条件。 (二)平面与直线 1.会求平面的点法式方程与一般式方程。会判定两个平面的位置关系。 2.会求点到平面的距离。 3.会求直线的点向式方程、一般式方程和参数式方程。会判定两条直线的位置关系。 4.会求点到直线的距离,两条异面直线之间的距离。 5.会判定直线与平面的位置关系。 试卷结构 试卷总分:150分 考试时间:150分钟 试卷内容比例: 函数、极限和连续 约20% 一元函数微分学 约30% 一元函数积分学 约30% 无穷级数、常微分方程 约15% 向量代数与空间解析几何 约5% 试卷题型分值分布: 选择题共 5题,每小题 4 分,总分20分; 填空题共10题,每小题 4 分,总分40分; 计算题共 8题, 总分60分; 综合题共 3题,每小题10分,总分30分。 只供学习与交流- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 考试 大纲 资料
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文