2020-2021学年高中数学(人教A版-选修1-1)课时作业第二章--2.1.2.docx
《2020-2021学年高中数学(人教A版-选修1-1)课时作业第二章--2.1.2.docx》由会员分享,可在线阅读,更多相关《2020-2021学年高中数学(人教A版-选修1-1)课时作业第二章--2.1.2.docx(3页珍藏版)》请在咨信网上搜索。
2.1.2 椭圆的简洁几何性质 课时目标 1.把握椭圆的范围、对称性、顶点、离心率等几何性质.2.明确标准方程中a,b以及c,e的几何意义,a、b、c、e之间的相互关系.3.能利用椭圆的几何性质解决椭圆的简洁问题. 1.椭圆的简洁几何性质 焦点的 位置 焦点在x轴上 焦点在y轴上 图形 标准 方程 范围 顶点 轴长 短轴长=______,长轴长=______ 焦点 焦距 对称性 对称轴是________,对称中心是______ 离心率 2.直线与椭圆 直线y=kx+b与椭圆+=1 (a>b>0)的位置关系: 直线与椭圆相切⇔有______组实数解,即Δ______0.直线与椭圆相交⇔有______组实数解,即Δ______0,直线与椭圆相离⇔________实数解,即Δ______0. 一、选择题 1.椭圆25x2+9y2=225的长轴长、短轴长、离心率依次是( ) A.5,3, B.10,6, C.5,3, D.10,6, 2.焦点在x轴上,长、短半轴长之和为10,焦距为4,则椭圆的方程为( ) A.+=1 B.+=1 C.+=1 D.+=1 3.若焦点在x轴上的椭圆+=1的离心率为,则m等于( ) A. B. C. D. 4.如图所示,A、B、C分别为椭圆+=1 (a>b>0)的顶点与焦点,若∠ABC=90°,则该椭圆的离心率为( ) A. B.1- C.-1 D. 5.若直线mx+ny=4与圆O:x2+y2=4没有交点,则过点P(m,n)的直线与椭圆+=1的交点个数为( ) A.至多一个 B.2 C.1 D.0 6.已知F1、F2是椭圆的两个焦点。满足·=0的点M总在椭圆内部,则椭圆离心率的取值范围是( ) A.(0,1) B. C. D. 题号 1 2 3 4 5 6 答案 二、填空题 7.已知椭圆的中心在原点,焦点在x轴上,离心率为,且过点P(-5,4),则椭圆的方程为______________. 8.直线x+2y-2=0经过椭圆+=1 (a>b>0)的一个焦点和一个顶点,则该椭圆的离心率等于______. 9.椭圆E:+=1内有一点P(2,1),则经过P并且以P为中点的弦所在直线方程为____________. 三、解答题 10.如图,已知P是椭圆+=1 (a>b>0)上且位于第一象限的一点,F是椭圆的右焦点,O是椭圆中心,B是椭圆的上顶点,H是直线x=- (c是椭圆的半焦距)与x轴的交点,若PF⊥OF,HB∥OP,试求椭圆的离心率e. 11.已知椭圆4x2+y2=1及直线y=x+m. (1)当直线和椭圆有公共点时,求实数m的取值范围; (2)求被椭圆截得的最长弦所在的直线方程. 力气提升 12.若一个椭圆长轴的长度、短轴的长度和焦距成等差数列,则该椭圆的离心率是( ) A. B. C. D. 13.已知在平面直角坐标系xOy中的一个椭圆,它的中心在原点,左焦点为F1(-,0),且右顶点为D(2,0).设点A的坐标是. (1)求该椭圆的标准方程; (2)若P是椭圆上的动点,求线段PA的中点M的轨迹方程. 1.椭圆的范围实质就是椭圆上点的横坐标和纵坐标的取值范围,在求解一些存在性和推断性问题中有着重要的应用. 2.椭圆既是一个轴对称图形,又是一个中心对称图形.椭圆的对称性在解决直线与椭圆的位置关系以及一些有关面积的计算问题时,往往能起到化繁为简的作用. 3.椭圆的离心率是反映椭圆的扁平程度的一个量,通过解方程或不等式可以求得离心率的值或范围. 4.在与椭圆有关的求轨迹方程的问题中要留意挖掘几何中的等量关系. 2.1.2 椭圆的简洁几何性质 答案 学问梳理 1. 焦点的 位置 焦点在x轴上 焦点在y轴上 图形 标准方程 +=1 +=1 范围 -a≤x≤a,-b≤y≤b -b≤x≤b,-a≤y≤a 顶点 (±a,0),(0,±b) (±b,0),(0,±a) 轴长 短轴长=2b,长轴长=2a 焦点 (±c,0) (0,±c) 焦距 2c=2 对称性 对称轴是坐标轴,对称中心是原点 离心率 e=,0<e<1 2.一 = 二 > 没有 < 作业设计 1.B [先将椭圆方程化为标准形式:+=1, 其中b=3,a=5,c=4.] 2.A 3.B 4.A [由(a+c)2=a2+2b2+c2, ∵b2=a2-c2,∴c2+ac-a2=0, ∵e=,∴e2+e-1=0,∴e=.] 5.B [∵>2,∴<4. ∴点P(m,n)在椭圆+=1的内部, ∴过点P(m,n)的直线与椭圆+=1有两个交点.] 6.C [∵ ·=0,∴M点轨迹方程为x2+y2=c2,其中F1F2为直径, 由题意知椭圆上的点在圆x2+y2=c2外部, 设点P为椭圆上任意一点,则|OP|>c恒成立, 由椭圆性质知|OP|≥b,其中b为椭圆短半轴长, ∴b>c,∴c2<b2=a2-c2,∴a2>2c2, ∴2<,∴e=<. 又∵0<e<1,∴0<e<.] 7.+=1 解析 设椭圆的方程为+=1 (a>b>0), 将点(-5,4)代入得+=1, 又离心率e==,即e2===, 解之得a2=45,b2=36,故椭圆的方程为+=1. 8. 解析 由题意知椭圆的焦点在x轴上,又直线x+2y-2=0与x轴、y轴的交点分别为(2,0)、(0,1),它们分别是椭圆的焦点与顶点,所以b=1,c=2,从而a=,e==. 9.x+2y-4=0 解析 设弦的两个端点为M(x1,y1),N(x2,y2), 则, 两式相减,得+=0. 又x1+x2=4,y1+y2=2,kMN=, ∴kMN=-,由点斜式可得弦所在直线的方程为 y=-(x-2)+1,即x+2y-4=0. 10.解 依题意知H,F(c,0),B(0,b). 设P(xP,yP),且xP=c,代入到椭圆的方程, 得yP=.∴P. ∵HB∥OP,∴kHB=kOP,即=. ∴ab=c2. ∴e==,∴e2==e-2-1. ∴e4+e2-1=0.∵0<e<1,∴e=. 11.解 (1)由 得5x2+2mx+m2-1=0. 由于直线与椭圆有公共点, 所以Δ=4m2-20(m2-1)≥0. 解得-≤m≤. (2)设直线与椭圆交于A(x1,y1)、B(x2,y2), 由(1)知,5x2+2mx+m2-1=0, 由根与系数的关系得x1+x2=-, x1x2=(m2-1). 设弦长为d,且y1-y2=(x1+m)-(x2+m) =x1-x2, ∴d== = = =. ∴当m=0时,d最大,此时直线方程为y=x. 12.B [由题意知2b=a+c,又b2=a2-c2, ∴4(a2-c2)=a2+c2+2ac. ∴3a2-2ac-5c2=0.∴5c2+2ac-3a2=0. ∴5e2+2e-3=0.∴e=或e=-1(舍去).] 13.解 (1)∵a=2,c=,∴b==1. ∴椭圆的标准方程为+y2=1. (2)设P(x0,y0),M(x,y),由中点坐标公式, 得 ∴ 又∵+y=1,∴+2=1 即为中点M的轨迹方程.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- -学案导学设计 学案导学 设计 2020 2021 学年 高中数学 人教 选修 课时 作业 第二 2.1
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【人****来】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【人****来】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【人****来】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【人****来】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文