《导学案》2021版高中数学(人教A版-必修5)教师用书:2.4等差数列的前n项和及其性质-练习.docx
《《导学案》2021版高中数学(人教A版-必修5)教师用书:2.4等差数列的前n项和及其性质-练习.docx》由会员分享,可在线阅读,更多相关《《导学案》2021版高中数学(人教A版-必修5)教师用书:2.4等差数列的前n项和及其性质-练习.docx(1页珍藏版)》请在咨信网上搜索。
1.在等差数列{an}中,d=2,an=11,Sn=35,则a1等于( ). A.5或7 B.3或5 C.7或-1 D.3或-1 【解析】由an=11,d=2,得11=a1+2(n-1),① 又由Sn=35,得35=na1+×2,② 联立①②解得n1=5,n2=7. 当n=5时,a1=3; 当n=7时,a1=-1. 【答案】D 2.设Sn是公差为d(d≠0)的无穷等差数列{an}的前n项和,则下列命题错误的是( ). A.若d<0,则数列{Sn}有最大项 B.若数列{Sn}有最大项,则d<0 C.若数列{Sn}是递增数列,则对任意的n∈N*,均有Sn>0 D.若对任意的n∈N*,均有Sn>0,则数列{Sn}是递增数列 【解析】选项C明显是错的,举出反例:-1,0,1,2,3,…,满足数列{Sn}是递增数列,但是Sn>0不成立. 【答案】C 3.等差数列{an}中,a1>0,S4=S9,则Sn取最大时,n= . 【解析】等差数列的前n项和Sn是关于n(n∈N*)的二次函数. ∵d<0,∴图象是开口向下的抛物线.由于S4=S9,故对称轴为n==6.5. 从而有n=6或7时,Sn最大. 【答案】6或7 4.已知数列{an}的前n项和为Sn=3n2+n+1,求这个数列的通项公式. 【解析】由题知当n=1时,a1=S1=5; 当n≥2时,an=Sn-Sn-1=(3n2+n+1)-[3(n-1)2+(n-1)+1]=6n-2, ∴an= 5.设Sn为等差数列{an}的前n项和,若a1=1,公差d=2,Sk+2-Sk=24,则k等于( ). A.8 B.7 C.6 D.5 【解析】∵Sk+2-Sk=ak+1+ak+2=2a1+(2k+1)d=4k+4,∴4k+4=24,故k=5. 【答案】D 6.设数列{an}是等差数列,且a2=-8,a15=5,Sn是数列{an}的前n项和,则( ). A.S10=S11 B.S10>S11 C.S9=S10 D.S9<S10 【解析】由于数列{an}是等差数列,且a2=-8,a15=5,所以解得所以S9=9a1+d=-45,S10=10a1+d=-45,S11=11a1+d=-44,所以S9=S10<S11. 【答案】C 7.设Sn为等差数列{an}的前n项和,若S3=3,S6=24,则a9= . 【解析】由已知条件可得 解得 ∴a9=a1+8d=15. 【答案】15 8.已知数列{an}为等差数列,前n项和记为Sn,a5=-13,S4=-82. (1)求S6; (2)求Sn的最小值. 【解析】(1)设数列{an}的公差为d,由已知a5=-13,S4=-82,得 解得a1=-25,d=3,∴a6=a5+d=-10,∴S6=S4+a5+a6=-82-13-10=-105. (2)由(1)知a1=-25,d=3,∴an=3n-28,且数列{an}首项为负,公差大于零,是递增数列. 令即解得<n≤, ∴n=9,即数列的前9项均为负数,第10项以后均为正数,∴当n=9时,Sn最小,最小值为S9=9×(-25)+×9×(9-1)×3=-117. 9.在等差数列{an}中,已知d=,an=,Sn=-则a1= . 【解析】由题意,得 由②得:a1=-n+2,代入①得n2-7n-30=0,∴n=10,n=-3(舍去),∴a1=-3. 【答案】-3 10.已知数列{an}的前n项和Sn=12n-n2,求数列{|an|}的前n项和Tn. 【解析】当n=1时,a1=S1=12-12=11, 当n≥2时,an=Sn-Sn-1=12n-n2-[12(n-1)-(n-1)2]=13-2n. ∵n=1时适合上式, ∴{an}的通项公式为an=13-2n. 由an=13-2n≥0,得n≤,即当1≤n≤6(n∈N*)时,an>0;当n≥7时,an<0. ∴当1≤n≤6(n∈N*)时, Tn=|a1|+|a2|+…+|an|=a1+a2+…+an=12n-n2. 当n≥7(n∈N*)时, Tn=|a1|+|a2|+…+|an| =(a1+a2+…+a6)-(a7+a8+…+an) =-(a1+a2+…+an)+2(a1+…+a6) =-Sn+2S6=n2-12n+72. ∴Tn=- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 导学案 2021 高中数学 人教 必修 教师 2.4 等差数列 及其 性质 练习
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【w****g】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【w****g】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【w****g】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【w****g】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文
本文标题:《导学案》2021版高中数学(人教A版-必修5)教师用书:2.4等差数列的前n项和及其性质-练习.docx
链接地址:https://www.zixin.com.cn/doc/3703631.html
链接地址:https://www.zixin.com.cn/doc/3703631.html