2021年高考数学(江苏专用-理科)二轮专题复习-专题二--第3讲.docx
《2021年高考数学(江苏专用-理科)二轮专题复习-专题二--第3讲.docx》由会员分享,可在线阅读,更多相关《2021年高考数学(江苏专用-理科)二轮专题复习-专题二--第3讲.docx(7页珍藏版)》请在咨信网上搜索。
1、第3讲平面对量考情解读(1)平面对量基本定理和向量共线定理是向量运算和应用的基础,高考中常以小题形式进行考查(2)平面对量的线性运算和数量积是高考的热点,有时和三角函数相结合,凸显向量的工具性,考查处理问题的力气1平面对量中的五个基本概念(1)零向量模的大小为0,方向是任意的,它与任意非零向量都共线,记为0.(2)长度等于1个单位长度的向量叫单位向量,a的单位向量为.(3)方向相同或相反的向量叫共线向量(平行向量)(4)假如直线l的斜率为k,则a(1,k)是直线l的一个方向向量(5)向量的投影:|b|cosa,b叫做向量b在向量a方向上的投影2平面对量的两个重要定理(1)向量共线定理:向量a(
2、a0)与b共线当且仅当存在唯一一个实数,使ba.(2)平面对量基本定理:假如e1,e2是同一平面内的两个不共线向量,那么对这一平面内的任一向量a,有且只有一对实数1,2,使a1e12e2,其中e1,e2是一组基底3平面对量的两个充要条件若两个非零向量a(x1,y1),b(x2,y2),则(1)ababx1y2x2y10.(2)abab0x1x2y1y20.4平面对量的三共性质(1)若a(x,y),则|a|.(2)若A(x1,y1),B(x2,y2),则|.(3)若a(x1,y1),b(x2,y2),为a与b的夹角,则cos .热点一平面对量的概念及线性运算例1(1)(2022福建)在下列向量组
3、中,可以把向量a(3,2)表示出来的是()Ae1(0,0),e2(1,2)Be1(1,2),e2(5,2)Ce1(3,5),e2(6,10)De1(2,3),e2(2,3)(2)如图所示,A,B,C是圆O上的三点,线段CO的延长线与线段BA的延长线交于圆O外的点D,若mn,则mn的取值范围是()A(0,1) B(1,)C(,1) D(1,0)思维启迪(1)依据平面对量基本定理解题(2)构造三点共线图形,得到平面对量的三点共线结论,将此结论与mn对应答案(1)B(2)D解析(1)由题意知,A选项中e10,C、D选项中两向量均共线,都不符合基底条件,故选B(事实上,a(3,2)2e1e2)(2)依
4、题意,由点D是圆O外一点,可设(1),则(1).又C,O,D三点共线,令(1),则(1,1),所以m,n.故mn(1,0)故选D.思维升华对于平面对量的线性运算问题,要留意其与数的运算法则的共性与不同,两者不能混淆如向量的加法与减法要留意向量的起点和终点的确定,机敏利用三角形法则、平行四边形法则同时,要抓住两条主线:一是基于“形”,通过作出向量,结合图形分析;二是基于“数”,借助坐标运算来实现(1)(2022陕西)设0,向量a(sin 2,cos ),b(cos ,1),若ab,则tan _.(2)如图,在ABC中,AFAB,D为BC的中点,AD与CF交于点E.若a,b,且xayb,则xy_.
5、答案(1)(2)解析(1)由于ab,所以sin 2cos2,2sin cos cos2.由于00,得2sin cos ,tan .(2)如图,设FB的中点为M,连接MD.由于D为BC的中点,M为FB的中点,所以MDCF.由于AFAB,所以F为AM的中点,E为AD的中点方法一由于a,b,D为BC的中点,所以(ab)所以(ab)所以b(ab)ab.所以x,y,所以xy.方法二易得EFMD,MDCF,所以EFCF,所以CECF.由于ba,所以(ba)ab.所以x,y,则xy.热点二平面对量的数量积例2(1)如图,BC、DE是半径为1的圆O的两条直径,2,则等于()A BC D(2)(2021重庆)在
6、平面上,|1,.若|,则|的取值范围是()A. B. C. D.思维启迪(1)图O的半径为1,可对题中向量进行转化,;(2)利用|,查找,的关系答案(1)B(2)D解析(1)2,圆O的半径为1,|,()()2()()201.(2),()()20,2.,.|1,21122()222(2)22,|,0|2,022,22,即|.思维升华(1)数量积的计算通常有三种方法:数量积的定义,坐标运算,数量积的几何意义;(2)可以利用数量积求向量的模和夹角,向量要分解成题中模和夹角已知的向量进行计算(1)(2022江苏) 如图,在平行四边形ABCD中,已知AB8,AD5,3,2,则的值是_ (2)已知点G是A
7、BC的重心,若A120,2,则|的最小值是_答案(1)22(2)解析(1)由3,得,.由于2,所以()()2,即222.又由于225,264,所以22.(2)在ABC中,延长AG交BC于D,点G是ABC的重心,AD是BC边上的中线,且AGAD,|cos 1202,|4,2,(),2()22222|2(2),2,|,|的最小值是.热点三平面对量与三角函数的综合例3已知向量a(cos ,sin ),b(cos x,sin x),c(sin x2sin ,cos x2cos ),其中0x.(1)若,求函数f(x)bc的最小值及相应x的值;(2)若a与b的夹角为,且ac,求tan 2的值思维启迪(1)
8、应用向量的数量积公式可得f(x)的三角函数式,然后利用换元法将三角函数式转化为二次函数式,由此可解得函数的最小值及对应的x值(2)由夹角公式及ac可得关于角的三角函数式,通过三角恒等变换可得结果解(1)b(cos x,sin x),c(sin x2sin ,cos x2cos ),f(x)bccos xsin x2cos xsin sin xcos x2sin xcos 2sin xcos x(sin xcos x)令tsin xcos x,则2sin xcos xt21,且1t.则yt2t12,1t,t时,ymin,此时sin xcos x,即sin,x,x,x,x.函数f(x)的最小值为,
9、相应x的值为.(2)a与b的夹角为,cos cos cos xsin sin xcos(x)0x,0x,x.ac,cos (sin x2sin )sin (cos x2cos )0,sin(x)2sin 20,即sin2sin 20.sin 2cos 20,tan 2.思维升华在平面对量与三角函数的综合问题中,一方面用平面对量的语言表述三角函数中的问题,如利用向量平行、垂直的条件表述三角函数式之间的关系,利用向量模表述三角函数之间的关系等;另一方面可以利用三角函数的学问解决平面对量问题,在解决此类问题的过程中,只要依据题目的具体要求,在向量和三角函数之间建立起联系,就可以依据向量或者三角函数的
10、学问解决问题已知向量a,b(cos x,1)(1)当ab时,求cos2xsin 2x的值;(2)设函数f(x)2(ab)b,已知在ABC中,内角A,B,C的对边分别为a,b,c,若a,b2,sin B,求f(x)4cos(2A)(x0,)的取值范围解(1)ab,cos xsin x0,tan x.cos2xsin 2x.(2)f(x)2(ab)bsin,由正弦定理,可得sin A,A.f(x)4cossin,x0,2x,1f(x)4cos(2A).故所求范围为1,1当向量以几何图形的形式毁灭时,要把这个几何图形中的一个向量用其余的向量线性表示,就要依据向量加减法的法则进行,特殊是减法法则很简洁
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2021 年高 数学 江苏 专用 理科 二轮 专题 复习
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【丰****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【丰****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。