2021高考数学(福建-理)一轮学案16-定积分及其简单的应用.docx
《2021高考数学(福建-理)一轮学案16-定积分及其简单的应用.docx》由会员分享,可在线阅读,更多相关《2021高考数学(福建-理)一轮学案16-定积分及其简单的应用.docx(5页珍藏版)》请在咨信网上搜索。
学案16 定积分及其简洁的应用 导学目标: 1.以求曲边梯形的面积和汽车变速行驶的路程为背景精确 理解定积分的概念.2.理解定积分的简洁性质并会简洁应用.3.会说出定积分的几何意义,能依据几何意义解释定积分.4.会用求导公式和导数运算法则,反方向求使F′(x)=f(x)的F(x),并运用牛顿—莱布尼茨公式求f(x)的定积分.5.会通过求定积分的方法求由已知曲线围成的平面图形的面积.6.能娴熟运用定积分求变速直线运动的路程.7.会用定积分求变力所做的功. 自主梳理 1.定积分的几何意义:假如在区间[a,b]上函数f(x)连续且恒有f(x)≥0,那么函数f(x)在区间[a,b]上的定积分的几何意义是直线________________________所围成的曲边梯形的________. 2.定积分的性质 (1)ʃkf(x)dx=__________________ (k为常数); (2)ʃ[f1(x)±f2(x)]dx=_____________________________________; (3)ʃf(x)dx=_______________________________________. 3.微积分基本定理 一般地,假如f(x)是区间[a,b]上的连续函数,并且F′(x)=f(x),那么ʃf(x)dx=F(b)-F(a),这个结论叫做__________________,为了便利,我们常把F(b)-F(a)记成__________________,即ʃf(x)dx=F(x)|=F(b)-F(a). 4.定积分在几何中的应用 (1)当x∈[a,b]且f(x)>0时,由直线x=a,x=b (a≠b),y=0和曲线y=f(x)围成的曲边梯形的面积S=__________________. (2)当x∈[a,b]且f(x)<0时,由直线x=a,x=b (a≠b),y=0和曲线y=f(x)围成的曲边梯形的面积S=__________________. (3)当x∈[a,b]且f(x)>g(x)>0时,由直线x=a,x=b (a≠b)和曲线y=f(x),y=g(x)围成的平面图形的面积S=______________________. (4)若f(x)是偶函数,则ʃf(x)dx=2ʃf(x)dx;若f(x)是奇函数,则ʃf(x)dx=0. 5.定积分在物理中的应用 (1)匀变速运动的路程公式 做变速直线运动的物体所经过的路程s,等于其速度函数v=v(t)[v(t)≥0]在时间区间[a,b]上的定积分,即________________________. (2)变力做功公式 一物体在变力F(x)(单位:N)的作用下做直线运动,假如物体沿着与F相同的方向从x=a移动到x=b (a<b)(单位:m),则力F所做的功W=__________________________. 自我检测 1.计算定积分ʃ3xdx的值为 ( ) A. B.75 C. D.25 2.定积分ʃ[-x]dx等于 ( ) A. B.-1 C. D. 3.如右图所示,阴影部分的面积是 ( ) A.2 B.2- C. D. 4.(2010·湖南)ʃdx等于 ( ) A.-2ln 2 B.2ln 2 C.-ln 2 D.ln 2 5.若由曲线y=x2+k2与直线y=2kx及y轴所围成的平面图形的面积S=9,则k=________. 探究点一 求定积分的值 例1 计算下列定积分: (1); (2); (3)ʃ(2sin x-3ex+2)dx; (4)ʃ|x2-1|dx. 变式迁移1 计算下列定积分: (1)ʃ|sin x|dx;(2)ʃsin2xdx. 探究点二 求曲线围成的面积 例2 计算由抛物线y=x2和y=3-(x-1)2所围成的平面图形的面积S. 变式迁移2 计算曲线y=x2-2x+3与直线y=x+3所围图形的面积. 探究点三 定积分在物理中的应用 例3 一辆汽车的速度-时间曲线如图所示,求此汽车在这1 min内所行驶的路程. 变式迁移3 A、B两站相距7.2 km,一辆电车从A站开往B站,电车开出t s后到达途中C点,这一段速度为1.2t m/s,到C点时速度达24 m/s,从C点到B点前的D点以匀速行驶,从D点开头刹车,经t s后,速度为(24-1.2t)m/s,在B点恰好停车,试求: (1)A、C间的距离; (2)B、D间的距离; (3)电车从A站到B站所需的时间. 函数思想的应用 例 (12分)在区间[0,1]上给定曲线y=x2.试在此区间内确定点t的值,使图中的阴影部分的面积S1与S2之和最小,并求最小值. 【答题模板】 解 S1面积等于边长为t与t2的矩形面积去掉曲线y=x2与x轴、直线x=t所围成的面积,即S1=t·t2-ʃx2dx=t3.[2分] S2的面积等于曲线y=x2与x轴,x=t,x=1围成的面积去掉矩形面积,矩形边长分别为t2,1-t,即S2=ʃx2dx-t2(1-t)=t3-t2+.[4分] 所以阴影部分面积S=S1+S2=t3-t2+(0≤t≤1).[6分] 令S′(t)=4t2-2t=4t=0时,得t=0或t=.[8分] t=0时,S=;t=时,S=;t=1时,S=.[10分] 所以当t=时,S最小,且最小值为.[12分] 【突破思维障碍】 本题既不是直接求曲边梯形面积问题,也不是直接求函数的最小值问题,而是先利用定积分求出面积的和,然后利用导数的学问求面积和的最小值,难点在于把用导数求函数最小值的问题置于先求定积分的题境中,突出考查同学学问的迁移力气和导数的应用意识. 1.定积分ʃf(x)dx的几何意义就是表示由直线x=a,x=b (a≠b),y=0和曲线y=f(x)围成的曲边梯形的面积;反过来,假如知道一个这样的曲边梯形的面积也就知道了相应定积分的值,如ʃdx=π (半径为2的个圆的面积),ʃdx=2π. 2.运用定积分的性质可以化简定积分计算,也可以把一个函数的定积分化成几个简洁函数定积分的和或差. 3.计算一些简洁的定积分问题,解题步骤是:第一步,把被积函数变形为幂函数、正弦函数、余弦函数、指数函数与常数积的和或差;其次步,把定积分用定积分性质变形为求被积函数为上述函数的定积分;第三步,分别用求导公式找到一个相应的使F′(x)=f(x)的F(x);第四步,再分别用牛顿—莱布尼茨公式求各个定积分的值后计算原定积分的值. (满分:75分) 一、选择题(每小题5分,共25分) 1.下列值等于1的积分是 ( ) A.ʃxdx B.ʃ(x+1)dx C.ʃdx D.ʃ1dx 2.(2011·汕头模拟)设函数f(x)=则ʃf(x)dx等于 ( ) A. B. C.6 D.17 3.已知f(x)为偶函数且ʃf(x)dx=8,则ʃf(x)dx等于 ( ) A.0 B.4 C.8 D.16 4.(2011·深圳模拟)曲线y=sin x,y=cos x与直线x=0,x=所围成的平面区域的面积为 ( ) A.ʃ0(sin x-cos x)dx B.2ʃ0(sin x-cos x)dx C.ʃ0(cos x-sin x)dx D.2ʃ0(cos x-sin x)dx 5.(2011·临渭区高三调研)函数f(x)=ʃt(t-4)dt在[-1,5]上 ( ) A.有最大值0,无最小值 B.有最大值0,最小值- C.有最小值-,无最大值 D.既无最大值也无最小值 题号 1 2 3 4 5 答案 二、填空题(每小题4分,共12分) 6.若1 N的力使弹簧伸长2 cm,则使弹簧伸长12 cm时克服弹力做的功为__________J. 7.ʃ(2xk+1)dx=2,则k=________. 8.(2010·山东试验中学高三三诊)若f(x)在R上可导,f(x)=x2+2f′(2)x+3,则ʃf(x)dx=________. 三、解答题(共38分) 9.(12分)计算以下定积分: (1)ʃdx; (2)ʃ2dx; (3)ʃ0(sin x-sin 2x)dx; (4)ʃ|3-2x|dx. 10.(12分)设y=f(x)是二次函数,方程f(x)=0有两个相等的实根,且f′(x)=2x-2. (1)求y=f(x)的表达式; (2)求y=f(x)的图象与两坐标轴所围成图形的面积. 11.(14分)求曲线y=ex-1与直线x=-ln 2,y=e-1所围成的平面图形的面积. 答案 自主梳理 1.x=a,x=b (a≠b),y=0和曲线y=f(x) 面积 2.(1)kʃf(x)dx (2)ʃf1(x)dx±ʃf2(x)dx (3)ʃf(x)dx+ʃf(x)dx(其中a<c<b) 3.微积分基本定理 F(x)| 4.(1)ʃf(x)dx (2)-ʃf(x)dx (3)ʃ[f(x)-g(x)]dx 5.(1)s=ʃv(t)dt (2)ʃF(x)dx 自我检测 1.A 2.A 3.C 4.D 5.±3 解析 由 得(x-k)2=0, 即x=k, 所以直线与曲线相切,如图所示, 当k>0时,S=ʃ(x2+k2-2kx)dx =ʃ(x-k)2dx=(x-k)3|=0-(-k)3=, 由题意知=9,∴k=3. 由图象的对称性可知k=-3也满足题意,故k=±3. 课堂活动区 例1 解题导引 (1)与确定值有关的函数均可化为分段函数. ①分段函数在区间[a,b]上的积分可分成几段积分的和的形式. ②分段的标准是使每一段上的函数表达式确定,依据原函数分段的状况分即可,无需分得过细. (2)f(x)是偶函数,且在关于原点对称的区间[-a,a]上连续,则ʃf(x)dx=2ʃf(x)dx. 解 (1)ʃdx =ʃxdx+ʃdx+ʃdx =x2|+ln x|-| =(e2-1)+(ln e-ln 1)- =e2-+. (2)ʃ0(sin x-2cos x)dx =ʃ0sin xdx-2ʃ0cos xdx =(-cos x)|0-2sin x|0 =-cos -(-cos 0)-2 =-1. (3)ʃ(2sin x-3ex+2)dx =2ʃsin xdx-3ʃexdx+ʃ2dx =2(-cos x)|-3ex|+2x| =2[(-cos π)-(-cos 0)]-3(eπ-e0)+2(π-0) =7-3eπ+2π. (4)∵0≤x≤2, 于是|x2-1|= ∴ʃ|x2-1|dx=ʃ(1-x2)dx+ʃ(x2-1)dx =|+|=2. 变式迁移1 解 (1)∵(-cos x)′=sin x, ∴ʃ|sin x|dx=ʃ|sin x|dx+ʃ|sin x|dx =ʃsin xdx-ʃsin xdx =-cos x|+cos x| =-(cos π-cos 0)+(cos 2π-cos π)=4. (2)ʃsin2xdx=ʃdx =ʃdx-ʃcos 2xdx =x|-| =- =. 例2 解题导引 求曲线围成的面积的一般步骤为:(1)作出曲线的图象,确定所要求的面积;(2)联立方程解出交点坐标;(3)用定积分表示所求的面积;(4)求出定积分的值. 解 作出函数y=x2和y=3-(x-1)2的图象(如图所示),则所求平面图形的面积S为图中阴影部分的面积. 解方程组得或 所以两曲线交点为A,B(2,2). 所以S=ʃ2-[3-(x-1)2]dx-ʃ2-x2dx =ʃ2-(-x2+2x+2)dx-ʃ2-x2dx =2--2- =--× =4. 变式迁移2 解 如图, 设f(x)=x+3, g(x)=x2-2x+3, 两函数图象的交点为A,B, 由 得或 ∴曲线y=x2-2x+3与直线y=x+3所围图形的面积 S=ʃ[f(x)-g(x)]dx =ʃ[(x+3)-(x2-2x+3)dx] =ʃ(-x2+3x)dx =|=. 故曲线与直线所围图形的面积为. 例3 解题导引 用定积分解决变速运动的位置与路程问题时,将物理问题转化为数学问题是关键.变速直线运动的速度函数往往是分段函数,故求积分时要利用积分的性质将其分成几段积分,然后求出积分的和,即可得到答案.s(t)求导后得到速度,对速度积分则得到路程. 解 方法一 由速度—时间曲线易知. v(t)= 由变速直线运动的路程公式可得 s=ʃ3tdt+ʃ30dt+ʃ(-1.5t+90)dt =t2|+30t|+|=1 350 (m). 答 此汽车在这1 min内所行驶的路程是1 350 m. 方法二 由定积分的物理意义知,汽车1 min内所行驶的路程就是速度函数在[0,60]上的积分,也就是其速度曲线与x轴围成梯形的面积, ∴s=(AB+OC)×30=×(30+60)×30=1 350 (m). 答 此汽车在这1 min内所行驶的路程是1 350 m. 变式迁移3 解 (1)设v(t)=1.2t,令v(t)=24,∴t=20. ∴A、C间距离|AC|=ʃ1.2tdt =(0.6t2)|=0.6×202=240 (m). (2)由D到B时段的速度公式为 v(t)=(24-1.2t) m/s,可知|BD|=|AC|=240 (m). (3)∵|AC|=|BD|=240 (m), ∴|CD|=7 200-240×2=6 720 (m). ∴C、D段用时=280 (s). 又A、C段与B、D段用时均为20 s, ∴共用时280+20+20=320 (s). 课后练习区 1.D 2.B 3.D 4.D 5.B 6.0.36 解析 设力F与弹簧伸长的长度x的关系式为F=kx, 则1=k×0.02,∴k=50, ∴F=50x,伸长12 cm时克服弹力做的功 W=ʃ50xdx=x2|=×0.122=0.36(J). 7.1 解析 ∵ʃ(2xk+1)dx= =+1=2,∴k=1. 8.-18 解析 ∵f′(x)=2x+2f′(2),∴f′(2)=4+2f′(2), 即f′(2)=-4,∴f(x)=x2-8x+3, ∴ʃf(x)dx=×33-4×32+3×3=-18. 9.解 (1)函数y=2x2-的一个原函数是y=x3-ln x, 所以ʃdx= =-ln 2-=-ln 2.………………………………………………………………(3分) (2)ʃ2dx=ʃdx = =-(2+ln 2+4) =ln +.…………………………………………………………………………………(6分) (3)函数y=sin x-sin 2x的一个原函数为 y=-cos x+cos 2x,所以ʃ0(sin x-sin 2x)dx =0 =-=-.……………………………………………………………(9分) =(3x-x2)|1+(x2-3x)|2=.…………………………………………………………(12分) 10.解 (1)设f(x)=ax2+bx+c (a≠0), 则f′(x)=2ax+b.又f′(x)=2x-2, 所以a=1,b=-2,即f(x)=x2-2x+c.………………………………………………(4分) 又方程f(x)=0有两个相等实根, 所以Δ=4-4c=0,即c=1. 故f(x)=x2-2x+1.………………………………………………………………………(8分) (2)依题意,所求面积S=ʃ(x2-2x+1)dx =|=.……………………………………………………………………(12分) 11.解 画出直线x=-ln 2,y=e-1及曲线y=ex-1如图所示,则所求面积为图中阴影部分的面积. 由解得B(1,e-1). 由解得A.…………………………………………………(4分) 此时,C(-ln 2,e-1),D(-ln 2,0). 所以S=S曲边梯形BCDO+S曲边三角形OAD =ʃ(e-1)dx-ʃ(ex-1)dx+………………………………………(7分) =(e-1)x|-(ex-x)|+|(ex-x)|| ………………………………………………(10分) =(e-1)(1+ln 2)-(e-1-e0)+|e0-(e-ln 2+ln 2)| =(e-1)(1+ln 2)-(e-2)+ln 2- =eln 2+.……………………………………………………………………………(14分)- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2021 高考 数学 福建 一轮 16 积分 及其 简单 应用
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【人****来】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【人****来】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【人****来】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【人****来】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文