2021高考数学(福建-理)一轮作业:2.2-函数的单调性与最值.docx
《2021高考数学(福建-理)一轮作业:2.2-函数的单调性与最值.docx》由会员分享,可在线阅读,更多相关《2021高考数学(福建-理)一轮作业:2.2-函数的单调性与最值.docx(4页珍藏版)》请在咨信网上搜索。
§2.2 函数的单调性与最值 一、选择题 1.函数f(x)的定义域为R,f(-1)=2,对任意x∈R,f′(x)>2,则f(x)>2x+4的解集为( ). A.(-1,1) B.(-1,+∞) C.(-∞,-1) D.(-∞,+∞) 解析 法一 由x∈R,f(-1)=2,f′(x)>2,可设f(x)=4x+6,则由4x+6>2x+4,得x>-1,选B. 法二 设g(x)=f(x)-2x-4,则g(-1)=f(-1)-2×(-1)-4=0,g′(x)=f′(x)-2>0,g(x)在R上为增函数. 由g(x)>0,即g(x)>g(-1). ∴x>-1,选B. 答案 B 2.给定函数①y=x,②y=log(x+1),③y=|x-1|,④y=2x+1,其中在区间(0,1)上单调递减的函数的序号是( ) A.①② B.②③ C.③④ D.①④ 解析: ①y=x为增函数,排解A、D;④y=2x+1为增函数,排解C,故选B. 答案:B 3.已知偶函数f(x)在区间[0,+∞)单调增加,则满足f(2x-1)<f的x的取值范围是( ). A. B. C. D. 解析 f(x)是偶函数,其图象关于y轴对称,又f(x)在[0,+∞)上递增,∴f(2x-1)<f⇔|2x-1|<⇔<x<.故选A. 答案 A 4.函数f(x)=(a>0且a≠1)是R上的减函数,则a的取值范围是( ) A.(0,1) B.[,1) C.(0,] D.(0,] 解析:据单调性定义,f(x)为减函数应满足: 即≤a<1. 答案:B 5.函数f(x)=ln(4+3x-x2)的单调递减区间是( ) A.(-∞,] B.[,+∞) C.(-1,] D.[,4) 解析: 由4+3x-x2>0得,函数f(x)的定义域是(-1,4),u(x)=-x2+3x+4=-(x-)2+的减区间为[,4),∵e>1,∴函数f(x)的单调减区间为[,4). 答案: D [点评] 可用筛选法求解,明显x=±100时,f(x)无意义,排解A、B;f(0)=ln4,f(1)=ln6,f(0)<f(1),排解C,故选D. 6.设函数y=f(x)在(-∞,+∞)内有定义,对于给定的正数K,定义函数fK(x)=取函数f(x)=2-|x|,当K=时,函数fK(x)的单调递增区间为( ). A.(-∞,0) B.(0,+∞) C.(-∞,-1) D.(1,+∞) 解析 f(x)= ⇔ f(x)= f(x)的图象如上图所示,因此f(x)的单调递增区间为(-∞,-1). 答案 C 7.已知偶函数y=f(x)对任意实数x都有f(x+1)=-f(x),且在[0,1]上单调递减,则( ) A.f<f<f B.f<f<f C.f<f<f D.f<f<f 解析:由条件知f(x+2)=-f(x+1)=f(x), ∴f(x)是周期为2的周期函数,∵f(x)为偶函数, ∴f=f=f=f, f=f=f, f=f=f=f, ∵f(x)在[0,1]上单调递减,∴f>f>f, ∴f>f>f. 答案:B 二、填空题 8.函数y=ln 的单调递增区间是________. 解析 本题考查复合函数单调区间的确定;据题意需满足>0即函数定义域为(-1,1),原函数的递增区间即为函数u(x)=在(-1,1)上的递增区间,由于u′(x)=()′=>0.故函数u(x)=的递增区间(-1,1)即为原函数的递增区间. 答案 (-1,1) 9.假如函数f(x)=ax2+2x-3在区间(-∞,4)上单调递增,则实数a的取值范围是________. 解析:(1)当a=0时,f(x)=2x-3,在定义域R上单调递增,故在(-∞,4)上单调递增; (2)当a≠0时,二次函数f(x)的对称轴为直线x=-,由于f(x)在(-∞,4)上单调递增,所以a<0,且-≥4,解得-≤a<0. 答案:[-,0] 10.已知函数f(x)=则满足不等式f(1-x2)>f(2x)的x的范围是________. 解析 f(x)=的图象如图所示, 不等式f(1-x2)>f(2x)等价于 或 解得-1<x<-1 答案 (-1,-1) 11.已知函数y=2sin(ωx+θ)为偶函数(0<θ<π),其图象与直线y=2某两个交点的横坐标分别为x1、x2,若|x2-x1|的最小值为π,则该函数的增区间为________. 解析:∵y=2sin(ωx+θ)为偶函数,0<θ<π,∴θ=,∴y=2cosωx,由条件知,此函数的周期为π,∴ω=2, ∴y=2cos2x,由2kπ-π≤2x≤2kπ,(k∈Z)得,kπ-≤x≤kπ(k∈Z),令k=0知,函数在上是增函数. 答案 12.已知函数f(x)=(a是常数且a>0).对于下列命题: ①函数f(x)的最小值是-1; ②函数f(x)在R上是单调函数; ③若f(x)>0在上恒成立,则a的取值范围是a>1; ④对任意的x1<0,x2<0且x1≠x2,恒有f<. 其中正确命题的序号是__________(写出全部正确命题的序号). 解析 (数形结合法)依据题意可画出草图,由图象可知,①明显正确;函数f(x)在R上不是单调函数,故②错误;若f(x)>0在上恒成立,则2a×-1>0,a>1,故③正确;由图象可知在(-∞,0)上对任意的x1<0,x2<0 且x1≠x2,恒有f<成立, 故④正确. 答案 ①③④ 【点评】 接受数形结合法.留意本题中的③和④的理解,此题充分体现了数形结合法的直观性与便捷性. 三、解答题 13.已知f(x)=(x≠a). (1)若a=-2,试证f(x)在(-∞,-2)内单调递增; (2)若a>0且f(x)在(1,+∞)内单调递减,求a的取值范围. 解:(1)证明:任设x1<x2<-2, 则f(x1)-f(x2)=-=. ∵(x1+2)(x2+2)>0,x1-x2<0, ∴f(x1)-f(x2)<0,即f(x1)<f(x2),. ∴f(x)在(-∞,-2)内单调递增. (2)任设1<x1<x2,则 f(x1)-f(x2)=-=. ∵a>0,x2-x1>0, ∴要使f(x1)-f(x2)>0,只需(x1-a)(x2-a)>0恒成立,∴a≤1.综上所述,a的取值范围是(0,1]. 14.已知函数f(x)=a·2x+b·3x,其中常数a,b满足ab≠0. (1)若ab>0,推断函数f(x)的单调性; (2)若ab<0,求f(x+1)>f(x)时的x的取值范围. 解 (1)当a>0,b>0时,由于a·2x,b·3x都单调递增,所 以函数f(x)单调递增; 当a<0,b<0时,由于a·2x,b·3x都单调递减, 所以函数f(x)单调递减. (2)f(x+1)-f(x)=a·2x+2b·3x>0. (i)当a<0,b>0时,x>-, 解得x>log; (ii)当a>0,b<0时,x<-, 解得x<log. 15.函数f(x)对任意的a、b∈R,都有f(a+b)=f(a)+f(b)-1,并且当x>0时,f(x)>1. (1)求证:f(x)是R上的增函数; (2)若f(4)=5,解不等式f(3m2-m-2)<3. (1)证明 设x1,x2∈R,且x1<x2, 则x2-x1>0,∴f(x2-x1)>1. f(x2)-f(x1)=f[(x2-x1)+x1]-f(x1) =f(x2-x1)+f(x1)-1-f(x1)=f(x2-x1)-1>0. ∴f(x2)>f(x1).即f(x)是R上的增函数. (2)解 ∵f(4)=f(2+2)=f(2)+f(2)-1=5, ∴f(2)=3, ∴原不等式可化为f(3m2-m-2)<f(2), ∵f(x)是R上的增函数,∴3m2-m-2<2, 解得-1<m<,故解集为. 16.设函数f(x)=ax2+bx+c(a,b,c为实数,且a≠0),F(x)=. (1)若f(-1)=0,曲线y=f(x)通过点(0,2a+3),且在点(-1,f(-1))处的切线垂直于y轴,求F(x)的表达式; (2)在(1)的条件下,当x∈[-1,1]时,g(x)=kx-f(x)是单调函数,求实数k的取值范围; (3)设mn<0,m+n>0,a>0,且f(x)为偶函数,证明F(m)+F(n)>0. [解析] (1)由于f(x)=ax2+bx+c,所以f ′(x)=2ax+b. 又曲线y=f(x)在点(-1,f(-1))处的切线垂直于y轴,故f ′(-1)=0, 即-2a+b=0,因此b=2a.① 由于f(-1)=0,所以b=a+c.② 又由于曲线y=f(x)通过点(0,2a+3), 所以c=2a+3.③ 解由①,②,③组成的方程组得,a=-3,b=-6,c=-3. 从而f(x)=-3x2-6x-3. 所以F(x)=. (2)由(1)知f(x)=-3x2-6x-3, 所以g(x)=kx-f(x)=3x2+(k+6)x+3. 由g(x)在[-1,1]上是单调函数知: -≤-1或-≥1, 得k≤-12或k≥0. (3)由于f(x)是偶函数,可知b=0. 因此f(x)=ax2+c. 又由于mn<0,m+n>0,可知m,n异号. 若m>0,则n<0. 则F(m)+F(n)=f(m)-f(n)=am2+c-an2-c =a(m+n)(m-n)>0. 若m<0,则n>0. 同理可得F(m)+F(n)>0. 综上可知F(m)+F(n)>0.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2021 高考 数学 福建 一轮 作业 2.2 函数 调性
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【丰****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【丰****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【丰****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【丰****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文