高中数学竞赛平面几何定理证明大全备课讲稿.doc
《高中数学竞赛平面几何定理证明大全备课讲稿.doc》由会员分享,可在线阅读,更多相关《高中数学竞赛平面几何定理证明大全备课讲稿.doc(12页珍藏版)》请在咨信网上搜索。
1、高中数学竞赛平面几何定理证明大全精品文档Gerrald 加油 坚持住Gerrald 加油 坚持住Gerrald 加油 坚持住莫利定理:将任意三角形的各角三等分,则每两个角的相邻三等分线的交点构成一个正三角形。設ABC中的B,C的两条三等分角线分別交于P, D两个点(图1),按照莫利定理,D是莫莱三角形的一個頂点,当然D就是BPC的內心,因為BD, CD正好是CBP, BCP的角平分线。莫利三角形的另两个頂点E, F应该分別落在CP和BP上,因此我们产生了一个念头,如果能夠在CP, BP上找到E, F这两个点,使DEF是个正三角形,再证AE、AF正好是BAC的三等分线就行了为此,先把DP连起來,
2、在CP, BP上分別取两点E, F使EDPFDP30,于是就得到一个三角形DEF。为什么它是一个正三角形呢?因为D是BPC的內心,所以DP是BPC的角平分线,即DPEDPF,由作图知EDPFDP30,在DPE和DPF中,DP是公共边,而夹此边的两角又是对应相等的,所以DPEDPF。于是DEDF,即DEF是个等腰三角形,它的腰是DE和DF,而它的頂角又是60,所以它当然是个正三角形。接下來,我们的目标就是希望能证明DEF真的是莫利三角形,亦即AE, AF的确会三等分BAC。如图2所示,在AB, AC上各取一点G,H,使得BGBD, CHCD,把G、 F、E、H各点依次连起來,根据BFDBFG,C
3、EDCEH,我们就得到GFFDFEEDEH。下面,如果能夠证明G,F,E,H,A五点共圆,則定理的证明就完成了,因为GAF,FAE,EAH这三个圆周角所对的弦GF, FE, EH都等長,因而这三个圆周角也就都相等了。为了证明G,H,E,F,A共圓,必须证明FGEFHEA/3。看图2,首先我们注意到GFE是个等腰三角形,GFE是它的顶角,如果这个角能求出來,其底角FGE也就能求出来了。PFE也是一个等腰三角形,这是因为PDFPDE,(PD是公用边,DPFDPE,PDFPDE30),所以PF=PE。等腰三角形PFE的顶角大小为:FPE=-2/3(ABC+ACB)=-2/3(-BAC)=/3+2/3
4、BAC(1)BFD=PDF+DPF=/6+1/2FPE=/6+/6+1/3BAC=/3+1/3BAC (2) GFE=2-EFD-2BFD=2-/3-2/3-2BAC/3=-2/3BAC (3)最后得到:FGE=FEG=1/2(-GFE)=1/3BAC(4)同理可证:FHE=HFE=1/3BAC(5)至此可知G,H,E,F,A五点共圓。因GF=FE=EH,所以GAF=FAE=EAH=1/3BAC(6)即AE和AF恰好是BAC的三等分线,所以DEF是莫利三角形。蝴蝶定理:AB是圆的一条弦,中点记为S,圆心为O,过S作任意两条弦CD、EF,分别交圆于C、D、E、F,连接CF,ED分别交AB于点M、
5、N,求证:MS=NS。证明(一)过O作OLAD,OTCF,垂足为L、T,连接ON,OM,OS,SL,ST容易证明ESDCSF 所以ES/CSED/FC根据垂径定理得:LDED/2,FTFC/2 所以ES/CSEL/CT又因为EC 所以ESLCST 所以SLNSTM因为S是AB的中点 所以OSAB 所以OSNOSN90 所以OSN+OSN180所以O,S,N,L四点共圆 同理O,T,M,S四点共圆所以STMSOM,SLNSON 所以SONSOM ,因为OSAB 所以MSNS证明(二)从向和作垂线,设垂足分别为和。类似地,从向和作垂线,设垂足分别为和。现在,由于从这些等式,可以很容易看出:由于PM
6、=MQ 现在,因此,我们得出结论: ,也就是说,是的中点。清宫定理 :设P、Q为ABC的外接圆上异于A、B、C的两点,P关于三边BC、CA、AB的对称点分别是U、V、W,且QU、QV、QW分别交三边BC、CA、AB或其延长线于D、E、F,则D、E、F在同一直线上证明设P、Q为ABC的外接圆上异于A、B、C的两点,P关于三边BC、CA、AB的对称点分别是U、V、W,且QU、QV、QW分别交三边BC、CA、AB或其延长线于D、E、F 这时,P、Q两点和D、F、E、三点有如下关系: 将三角形的三边或者其延长线作为镜面,则从P点出发的光线照到D点经过BC反射以后通过Q点,从P点出发的光线照到E点经AC
7、的延长线反射后通过Q点,从P点出发的光线照到F点后通过Q点 从而,如果P、Q两点重合,则D、E、F三点成为从P(即Q)点向BC,CA,AB或者它们的延长线所引的垂线的垂足。于是,如果P、Q两点重合,清宫定理就成为西摩松定理。 我们决定将证明清宫定理的方针确定如下:因为D、E、F三点中,有两点在ABC的边上,其余一点在边的延长线上, 如证明 (BD/DC)(CE/EA)(AF/FB)=1, 则根据梅涅劳斯定理的逆定理,就可证明DEF三点在同一直线上。 首先,A、B、P、C四点在同一圆周上,因此 PCE=ABP 但是,点P和V关于CA对称 所以PCV=2PCE 又因为P和关于AB对称,所以 PBW
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高中数学 竞赛 平面几何 定理 证明 大全 备课 讲稿
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【丰****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【丰****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。