初三数学期末测试题及答案教案资料.doc
《初三数学期末测试题及答案教案资料.doc》由会员分享,可在线阅读,更多相关《初三数学期末测试题及答案教案资料.doc(7页珍藏版)》请在咨信网上搜索。
此文档仅供收集于网络,如有侵权请联系网站删除 初三数学期末测试题 全卷分A卷和B卷,A卷满分86分,B卷满分34分;考试时间l20分钟。A卷分第Ⅰ卷和第Ⅱ卷,第Ⅰ卷为选择题,第Ⅱ卷为其他类型的题。 A卷 B卷 总分 题号 一 二 三 四 A卷总分 17 18 19 B卷总分 得分 一、选择题(本题共有个小题,每小题4分,共32分)在每小题给出的四个选项中,只有一项是正确的,把正确的序号填在题后的括号内。 1.下列实数中是无理数的是( ) (A) (B) (C) (D) 2.在平面直角坐标系中,点A(1,-3)在( ) (A)第一象限 (B)第二象限 (C)第三象限 (D)第四象限 3.下列四组数据中,不能作为直角三角形的三边长是( ) (A)3,4,6 (B)7,24,25 (C)6,8,10 (D)9,12,15 4.下列各组数值是二元一次方程的解的是( ) (A) (B) (C) (D) 5.已知一个多边形的内角各为720°,则这个多边形为( ) (A)三角形 (B)四边形 (C)五边形 (D)六边形 O 6.如果,那么的值为( ) (A)-3 (B)3 (C)-1 (D)1 7.在平面直角坐标系中,已知一次函数的图象大致如图所示,则下列结论正的是( ) (A)>0,>0 (B)>0, <0 (C)<0, >0 (D)<0, <0. 8.下列说法正确的是( ) (A)矩形的对角线互相垂直 (B)等腰梯形的对角线相等 (C)有两个角为直角的四边形是矩形 (D)对角线互相垂直的四边形是菱形 二、填空题:(每小题4分,共16分) c 9.如图,在Rt△ABC中,已知、、分别是∠A、∠B、∠C的对 边,如果=2,那么= 。 10.在平面直角坐标系中,已知点M(-2,3),如果将OM绕原点O 逆时针旋转180°得到O,那么点的坐标为 。 y x A B O y 11.已知四边形ABCD中,∠A=∠B=∠C=90°,现有四个条件: ①AC⊥BD;②AC=BD;③BC=CD;④AD=BC。如果添加这四个条件中 的一个条件,即可推出该四边形是正方形,那么这个条件可以是 (写出所有可能结果的序号)。 12.如图,在平面直角坐标系中,把直线沿轴向下平移后 得到直线AB,如果点N(,)是直线AB上的一点,且3-=2,那 么直线AB的函数表达式为。 三、(第13题每小题6分,第14题6分,共18分) 13.解下列各题: (1)解方程组 (2)化简: A B C D 14.如图,在直角梯形ABCD中,AD∥BC,AB⊥BC,AD=1,AB=3,CD=5,求底边BC的长。 四、(每小题10分,共20分) 15.如图,已知四边形ABCD是平行四边形,BE⊥AC于点E,DF⊥AC于点F。 (1)求证:△ABE≌△CDF; (2)连结BF、DE,试判断四边形BFDE是什么样的四边形?写出你的结论并予以证明。 A B C E F D 16.如图,在平面直角坐标系中,一次函数的图象经过点A(1,4),点B是一次函数的图象与正比例函数的图象的交点。 (1)求点B的坐标。 x y O A B (2)求△AOB的面积。 B卷(50分) 17.(共10分)某商场代销甲、乙两种商品,其中甲种商品的进价为120元/件,售件为130元/件,乙种商品的进价为100元/件,售件为150元/件。 (1)若商场用36000元购进这两种商品,销售完后可获得利润6000元,则该商场购进甲、乙两种商品各多少件? (2)若商场要购进这两种商品共200件,设购进甲种商品件,销售后获得的利润为元,试写出利润(元)与(件)函数关系式(不要求写出自变量的取值范围);并指出购进甲种商品件数逐渐增加时,利润是增加还是减少? 18.(共12分)如图,已知四边形ABCD是正方形,E是正方形内一点,以BC为斜边作直角三角形BCE,又以BE为直角边作等腰直角三角形EBF,且∠EBF=90°,连结AF。 (1)求证:AF=CE; (2)求证:AF∥EB; (3)若AB=,,求点E到BC的距离。 A D C E B F 19.(共12分)如图,在平面直角坐标系中,已知矩形OABC的两个顶点A、B 的坐标分别A(0)、B(2),∠CAO=30°。 (1)求对角线AC所在的直线的函数表达式; (2)把矩形OABC以AC所在的直线为对称轴翻折,点O落在平面上的点D处,求点D的坐标; (3)在平面内是否存在点P,使得以A、O、D、P为顶点的四边形为菱形?若存在,求出点P的坐标;若不存在,请说明理由。 y x D B A O C 参考答案: A卷:一、1.B 2. D 3.A 4.A 5. D 6.C 7.D 8.B 二. 9. 10. (2,-3) 11. ①、③ 12. 三、13(1).原方程组的解为 . (2) 原式=. 14.解:如图,过点D作DE⊥BC于E,∵ABCD是直角梯形,∴BE=AD=1,DE=AB=3,在Rt△DEC中,DE=3,CD=5, ∴由勾股定理得,CE=,∴BC=BE+CE=1+4=5. A B C E F D 四、15(1) ∵四边形ABCD是平行四边形, ∴AB=CD,AB∥CD, ∵AB∥CD, ∴∠BAE=∠DCF, ∵BE⊥AC于点E,DF⊥AC于点F, ∴∠AEB=∠CFD=90º,在△ABE和△CDF中, ∵∠BAE=∠DCF,∠AEB=∠CFD,AB=CD,∴△ABE≌△CDF(AAS), x y O A B C (2)如图,连结BF、DE,则四边形BFDE是平行四边形,证明:∵BE⊥AC于点E,DF⊥AC于点F,∴∠BEF=∠DFE=90º,∴BE∥DF,又由(1),有BE=DF,∴四边形BFDE是平行四边形 16.(1)点B的坐标(3,2), (2)如图,设直线 与y 轴相交于点C,在中,令 x =0,则y =5, ∴点C的 的坐标为(0,5),∴• =•(-)=×5×(3-1)=5,∴△AOB的面积为5。 B卷 17.(1) 设购进甲种商品件, 乙种商品y 件,由题意, 得解得所以,该商场购进甲种商品240件, 乙种商品72件。(2)已知购进甲种商品件, 则购进乙种商品(200-)件,根据题意,得y =(130-120)+(150-100)(200-)=-40+10000, ∵y =-40+10000中, =-40<0, ∴随的增大而减小。∴当购进甲种商品的件数逐渐增加时,利润是逐渐减少的。 18.(1) ∵四边形ABCD是正方形, ∴∠ABE+∠EBC=90º,AB=BC, ∵△EBF是以以BE为直角边的等腰直角三角形, ∴∠ABE+∠FBA=90º,BE=BF, ∴∠FBA=∠EBC,在△ABF和△CBE中, ∵AB=BC, ∠FBA=∠EBC, BE=BF, ∴△ABF≌△CBE, ∴AF=CE, (2)证明:由(1), ∵△ABF≌△CBE, ∴∠AFB=∠CEB=90º,又∠EBF=90º, ∴∠AFB+∠EBF=180º, ∴AF∥EB. (3)求点E到BC的距离,即是求Rt△BCE中斜边BC上的高的值,由已知,有BE=BF,又由,可设BE=,CE=3,在Rt△BCE中,由勾股定理,得, x D B A E O C P F y 而BC=AB=5,即有15==75, ∴=5,解得=,∴BE=×,CE=3,设Rt△BCE斜边BC上的高为, ∵·BE·CE=·BE·,∴(×)×3=5×,解得=3,点E到BC的距离为3. 19.(1)由题意,得C(0,2),设对角线AC所在的直线的函数表达式为(≠0),将A(-2,0)代入中,得-2+2=0,解得=,∴对角线所在的直线的函数表达式为,(2) ∵△AOC与△ADC关于AC成轴对称, ∠OAC=30º, ∴OA=AD, ∠DAC=30º, ∴∠DAO=60º,如图,连结OD, ∵OA=AD, ∠DAO=60º, △AOD是等边三角形,过点D作DE⊥轴于点E,则有AE=OE=OA,而OA=2,∴AE=OE=,在Rt△ADE中, ,由勾股定理,得DE=,∴点D的坐标为(-,3), (3)①若以OA、OD为一组邻边,构成菱形AODP,如图,过点D作DP∥轴,过点A作AP∥OD,交于点P ,则AP=OD=OA=2,过点P作PF⊥轴于点F, ∴PF=DE=3,AF=,∴OF=OA+AF=2+=3;由(2), △AOD是等边三角形,知OA=OD,即四边形AODP为菱形, ∴满足的条件的点(-3,3); ②若以AO、AD为一组邻边,构成菱形AOD,类似地可求得(,3); ③若以DA、DO为一组邻边, 构成菱形ADO,类似地可求得(-,-3); 综上可知,满足的条件的点P的坐标为(-3,3)、(,3)、(-,-3). 只供学习与交流- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 初三 数学 期末 测试 答案 教案 资料
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文