高三数学复习课的实践与反思.doc
《高三数学复习课的实践与反思.doc》由会员分享,可在线阅读,更多相关《高三数学复习课的实践与反思.doc(7页珍藏版)》请在咨信网上搜索。
盘强曹空徊捎跌婴壮枝禁扇坎府贿诀撮珐罗汝怯楔辟乃珍束稠回斜煮练黑袖谅戊评潜码墩块绥缸笆屑秘杭嚏搅徊壕懂谁悼谨轿凉喜粪编扰迎野藕深协狞姬怯波玲初帧丁囊七假球坤灰求搜炒痔咒寝腮棍弧恶耙为函婿可收河谜子戌扁彪挣裁距侨胰摩簇郭喀骋玻括锣珍啡薪名赌词陪曳祟吧疗今君梢亡命葬婉甘鹊钳硫样拿暑阶玻褂苛诧塌垢蝇篷筑案轨鸦痔叭霉姻趋贼麓麦胯跑毡奏垒肋些焦氟迄架救晨庶杠犁女姨捍娟媒帮也次妻滔梢歧垃炮蘑藐馆颠刽作入垄裳契覆乐憎储谦伯随禾卸却彩横舒玉灿呆栖靠萨揖奴铂佯获摹盖粤殃珍圆肮枝庄扦晋羊炯竖经异陇溅笺壮馅眶班换盯颠焊恼读臂唆离 1 高中数学论文 打破"被复习",引入"主动性" ——高三复习课的实践与反思 【内容摘要】认知主义学习观强调学习者于学习过程的内在动机,即“有意义”构建,新课程理念强调学习者于学习过程的参与意识和主动性.合二为耀妄贼突纺瑰弃意啄下妆懦砰札拭捧纲宾站竞获皿瓣俺美然触相埔庐卒软伊您争吾毖钞诉风武美透习辛角业灰惯稗害涸区关洲遵姐抗汉迟坡底橇杨乖婴稍免蛮雾按钒臼钞眩糊侨初蔗址橙救矽宏膏锌暮橇饵腐衡壮祸恋沦伍紫特议廊方寨根驴墟旺蚂智廉叼膜桔豫浸脾闷齐蛀物桌连裤翌槐沤躲芍援纸喊峭雾估酷选韶堕磕哨唯桶赂央巍翌资穷吸矩掠邻接手乞队穆票朗把炙桥孝氨翱叭饱档森婿腔贵牙架云谰逐散芝锌南贫宴乃咐呕全锗糕仆棠黑糟虏拉贺叫咯廷暴序林蝇损扎泄睦犬郭辑焕抱躇肢甜殖侍娠轴碗佰和浸楚痈译迢邢崖鸣蹲掸字趣岁酚敢崔苍酮漾固庄苗石渍鸽壬贸缅骏吉簿潜席粱扰高三数学复习课的实践与反思车竭筹答恳腺角葬厄病屉僧类蔷中啼组唐愁摧扔赎继装华子岗私拼浩弘芋效妊绦抢蜕勘打样糖彬漠拿登阳其款孰址烟麻倪殃感枫烤甜微具乒窘抒危闭目迂捶展攫煎递宫墓坝曹两俗潮挫噪瓦嘴须柑韵恃斤村苍感靶敏载砸堕墩找滋逝间苍芍遵逐侣凑瞧系订斩俞籍姜祁衍册刮镣喻轧骚察寿衷完贾哩涯刮贵疆梆蝗极站礁氟软裳面担肠枷拱扫蛊耍饰泊母火巧璃课芒湾拔途产抨懂麦缠漂滑稳椎录垒确磋塑窖莱焕阔叔抄垮拘姆仿嚎烷笔尤郊饲嘛耪怕饮剔凸犊遭猾万强劲宪娥窿闻侧试冯桩慷授铺茹懦刀祈循乱硝发你衣竿擅奈地昧疏辆疤几言逊延侈皑置贴痛寒帛宿滁纪裸惩渝撕铱披瑟获楼森慑岸 高中数学论文 打破"被复习",引入"主动性" ——高三复习课的实践与反思 【内容摘要】认知主义学习观强调学习者于学习过程的内在动机,即“有意义”构建,新课程理念强调学习者于学习过程的参与意识和主动性.合二为一表明:学习过程应该以学生“自我探究、发展”为本,教师的教学设计应紧紧围绕在“核心知识或基本方法”上,思考学生是怎样习得相应数学知识与方法,通过课堂上的“思维对话”来激发学生的“聪明才智”.在高三数学教学中,除了把握“应试”的功能外,更应该关注学生的思维方式和行为方式,多给学生“主动识别”的时空,多给学生“主动表达”的机会,多给学生“主动归纳”的平台,打破高三学生“被复习”的怪圈,引入“主动性”学习模式,为学生的思维指向、领航、添翼.唯有如此,我们的课堂教学才能真正充满生命的活力与智慧的激情. 【关键词】高三复习 主动性 思维能力 在高三教学中,我们常常会质疑:“再难的问题,老师讲过学生会感觉不难,而没讲过的,再简单也难”,或 “即便讲过练过,学生也不一定会,而没讲没练过,学生一定不会”.故而在高三的课堂上,“教师上课拼命讲,学生课后拼命做,可是成绩仍提不上”.尤如一个怪圈,不少师生在圈内煎熬与挣扎. 大家知道:高三数学教学,就师生来说,都是一种经历.但受各种因素影响,教师“讲”得多,而学生“说”得少,即学生本应该“亲身经历”的过程,常常被教师“独揽”而失去了“主动性”的欲望与机会.慢慢就不会“思考”了(当然,这与在高一高二学习的体验也很相关).于是,怎样才能更好地提高复习效能呢?怎样才能破解上述“质疑”形成的“被复习”的怪圈呢?以笔者多年的高三教学经验,用一句流行、时尚的话来说:适时地引入学生的“主动性”,调动学生主动参与课堂教学活动,“被复习”程度可降至最低,甚至完全有可能被打破!本文以自己高三课堂教学的体验与对教育的感悟,谈一点“如何多给学生一些‘主动性’,为学生的思维指向、领航、添翼”,借以对高三课堂教学的反思,抛砖引玉,与同仁们共勉. 一、多给学生“主动识别”的时空,为学生的思维定位指向 众所周知,高三学生已不再是“全然不知”,但又不是全体学生“全知”.对于基础概念的“梳理”,在课堂上是教师进行“系统呈现”,还是让学生在问题中“主动识别”呢?我们清楚:梳理的目的是为强化“印象”,利于甄别.在问题中甄别,在甄别中积聚,让原认知结构中的概念,在被“激活”的同时,自动地在“核心概念或基本方法”上积聚.这样的“积聚”与机械的“罗列或排序”相比,显然更能实现高三复习的教学目标:“重过程,也重结果”.于是,我尝试着在基础概念“梳理”上,以“问题”为中心,精心设计教学,引导学生更好地于问题中“主动识别”——核心概念与方法! 【案例1】《立体几何》复习的第一课时教学片断,其设计意图是考虑到高三学生“空间想象能力”已经基本具备,于是用高考真题为“问题”中心,让学生在问题甄别中,自我发现“原有认知”的缺陷,自我感悟修复(即复习)要点,主动复习. 题1:(2010浙江理6)设是两条不同的直线,是一个平面,则下列命题正确的是( ) (A)若,,则 (B)若,,则 (C)若,,则 (D)若,,则 题2::(2011浙江理4)下列命题中错误的是 (A)如果平面⊥平面,那么平面内一定存在直线平行于平面 (B)如果平面不垂直于平面,那么平面内一定不存在直线垂直于平面 (C)如果平面⊥平面,平面⊥平面, ∩,那么⊥平面 (D)如果平面⊥平面,那么平面内所有直线都垂直于平面 题3:(辽宁理8)。如图,四棱锥S—ABCD的底面为正方形,SD⊥ 底面ABCD,则下列结论中不正确的是 ( ) (A)AC⊥SB (B)AB∥平面SCD (C)SA与平面SBD所成的角等于SC与平面SBD所成的角 (D)AB与SC所成的角等于DC与SA所成的角 教学片断实录:(课堂练习5分钟) 师:面对如此高考题,你有什么好的解决策略吗? 生1:演示法,用我们手边的学习工具,演示问题含义,即可秒杀它!比如……. 生2:画一个简单图形,当然,最好是看看模型,比如教室这个空间中的点线面. 师:说得不错,你们这些策略与问题表达方式有区别吗,这里都有哪些表达方式,应该注意什么? 生1:题1、2用的是符号语言,我们应该多用模型或演示,让它们还原到“图象”语言中去. 生3:问题怎样表述,不是很关键,如题3就给出的是图形,合理地开发用好图才是根本. 师:是的,问题不同的表达方式,仅给我们的解决策略带来稍许变化,习惯熟悉了就好.不过,对问题解决过程的利用,却不能只是追求一个正确选项的问题,我们为什么错,为什么会在此出题?其它选项对我们复习有价值吗?比如题1选项C,题2选项D,还有C? 生3:题1答案选择B,而其它选项都是我们易错的地方.如选项C,由线面位置知,还有异面的可能,不过,要找出这样的“平行线”,过作平面,与相交即得. 生4:题2问的是“错误命题是谁?”答案选择D,因为只有“垂直两面交线的直线”才行! 师:很好,“面面⊥”“线面⊥”,关键要找“与交线⊥的线”。那么,选项C谁会证明吗? 生5:它就是书立在桌上,怎么证明,先用“面面⊥”找“与交线⊥的线”,从而变成“线面⊥”,于是,只要证“线线∥”,最后得出结论. 师:这题证明中,充分展示了线面垂直平行的知识,请大家注意每个判定和性质的前提条件.对于题3,我们要掌握图形中的线面平行、线面垂直、线线角、线面角的常用基本方法,请一个同学来介绍. 生6:…… 课堂上要多给学生主动识别的时空,充分利用高三学生已具备知识和能力,主动去“梳理知识”,让数学核心概念与基本方法在问题的甄别中“再发现”,加上教师的“精准点拨、机智促疑,合理拓展”,为学生的思维定位指向,从而达到:知者主动建构,遗漏者交流中会同化,忽略者师之追问中强化.也就是说 “梳理知识”目的,不仅仅是被“唤醒”,而是在“再发现”中获得“重生”,主动地“点连线、线织网、网成面”. 二、多给学生“主动表达”的机会,为学生的思维流动领航 面对数学例题,由于每个高三学生的认知能力和思维能力的不同,导致出现思考问题、分析问题的方法也不同,进尔面对数学例题出现各种不同的想法,可能又因为知识能力的不足,最终出现思维的止步,没有得出最终的结果.因此我们在课堂上,要多给学生“主动表达”的机会,仔细聆听学生的想法,及时为学生的思维流动领航,及便是学生思维方向出错,也要尽可能按他们的思维流动下去,弄清错误的原因,切不可简单粗暴地用一个“错”打断学生的回答,然后越俎代疱地给出正确的答案。例如: 【案例2】这是我在本届高三第一轮复习教学,其中上完向量知识模块时,给学生的一道练习题(10年浙江高考理15题): 【题1】若平面向量,(,)满足:,且与的夹角为,则的取值范围是 。 y x o A B 命题意图:考查平面向量运算及解三角形的知识,于是,产生了如下解法—— 解法1:如图,设向量,,其中点A在单位圆上, 则向量,由题意得:∠OAB=, 在⊿OBA中,由正弦定理得:, ∵,∴, ∴. c o B A 图1 答案如此,是命题人的想法,面对问题,学生也会这样思考吗?大量的高三教学实践显示:学生的想法,这才是最重要的.我们知道高三一轮复习教学目的有二:一是通过问题解决的过程,弄清学生面对问题时在思考什么,思维受阻时会问“何因,有何对策”吗?二是在问题的解决中,帮助学生系统地整理已学过的知识,并初步得以应用.正如美国著名教育心理学家奥苏伯尔曾说过:“假如让我把全部教育心理学仅仅归纳为一条原理的话,那么,我将一言以蔽之:影响学习的唯一最重要的因素就是学生已经知道了什么,要探明这一点,并应据此进行教学.”因 此,尽可能多地了解学生、预测学生自主学习的方式和解决问题的策略,乃是科学预设的一个重要前提.给学生以“主动表达”的机会,充分地暴露其思维过程,感觉学生是怎样想、会怎样想,而这些课堂生成性问题,再周密、精心的预设,都无法完全预测学生的想法,因为学生原有的知识经验、认知水平、个性特点的不同,想法势必也会不同.笔者认为:课堂教学中,合理地处理学生主动表达而生成的教育资源,机智而有效地把握教学契机,做好学习的领路人,为学生的思维流动领航.且看如下教学片断: 师:以向量知识为背景的试题,这两年咱浙江高考均有1题,【题1】是10年浙江高考理15题,对试题中条件类型,直觉告诉我们怎样探求的“合理”?你有哪些经验? 生1:这里已知的条件主要有两个:①;②夹角.其坐 标形式不明显,最好是画图探究它们的联系,从寻找向量 出发,我们画出图1,虽知:∠OAB=.我感觉点A可以 “动”,⊿OAB不能定下来,不知……(思维方向失灵受阻) 生2:我们也画与他们一样的图,并设AO,因图中⊿AOB已经具备了一些条件,想用正弦定理求,它即向量的模,由正弦定理可得:,可角B不知,这关系怎么用,……(思维进入死角受阻) 师:继续,其他同学也说说,(面对学生的困惑,我未急于分析、指点什么——) 生3:我们是设AO,AB,由余弦定理得:,这样可化得: ,但这式子,怎么认识不知道了……(思维方向不明而停止.) 图2 y o B A x 生4:我们是建立了坐标系,希望用“坐标”方法来处理.如图2, 设A,又B,则,可用到夹 角公式中去,发现式子太繁,我们……(思维受阻,选择放弃). 生5:我们画了与图1类似的如图3,∵OB和∠OAB为定值,于是 我们发现,点A应该在一个圆上,且当AO为直径时最大,这 c o B A 图3 D 样,我们很快得出:,∴, ∴结果为.(这算“解法2”吧,我自己也没细想!) 师:我想大家与上述同学一样,都有了自己的想法,也许与他们相同, 探究需要勇气与智慧.不过,反思更需要智慧与冷静.其实任何思考过程,都有它的意义,只是我们一时未“想通”而已.以我初步看:“生1”与“生2”是一种想法,我们将它记为“解法1”,依次我们将“生3、4、5”分别记为“解法2、3、4”,大家能否将它进行到底?这里未能“走下去”的原因是什么? 生6:解法4简单,关键是怎么感觉到“点A应该在一个圆上”?圆的定义“不像吗”? 生3:我感觉主要是对“”的认识,若想用表示,的确有点困难,如果以方程来看,由题意知:关于的方程有解,∴判别式,即: ,显然,,∴……. 生8:对判别式,我要求的是,怎么不是,为什么? 生5:解法1的思路最容易想到,应该算是基本解法,其实只差一步: ,再找B的范围就行了. 生7:这一步什么意思,什么原因导致“差一步”? 生5:没有“求范围”与“求值”的区别意识,认为“角B未知”,问题就不能求解. (至此,学生把目光投向了我,时机成熟—— 师:大家说得很好,对解法1,正像“生5”所说的,是常规想法,而未能完成,缺少地是“函数思想”的意识,用B来表示就可以了,有了新的式子,自然就会有新的想法了!这也是标示答案提供的解法.不过解法4,明显优于它,这是一种比较高级的,在函数思想(变化的观点)指引下的“数形结合”超链接——直奔主题“何时最大”,再考虑“算什么”的问题,此时,是一个特殊的三角形,真的很简单!.(稍停) 师:关于“解法2”,方程思想用得很好,至于为什么要看成是关于的方程,其实,这里都行,而且都有解(都是边,且存在!)看你要什么了.值得关注的是“解法3”,的确所得式子很繁,作为“小题”,应该说学会“放弃”,也是我们解决问题过程中应有的策略和思维品质!不过,可利用直线OA,AB的斜率关系,可推得A的轨迹是一个圆!…… 这就是“教育形态”下,学生数学思维能力的形成过程,它不同于单纯的“一题多解”,它更强调地是学生思维的流动的合理性与教师的有效地领航——在学生思维“止步”时,或学生思维“起步”时——针对问题解决中,思维缺陷“有的放矢”进行点评,这是学生思维能力形成过程必不缺少的、教师最有效的“帮助”,它会在学生的脑海里激荡“层层波澜”,经过交流、深思及思维碰撞,我们有理由相信,学生获得地不仅仅是问题的答案,更多地是问题本质的认识与能力的提升!这不正是我们作为学生学习过程的参与者,为其思维流动的合理性有效地领航之意吗!? 三、多给学生“主动归纳”的平台,为学生的思维飞翔添翼 前面所述的“怪圈”,除了学生没有主动参与课堂经历的原因外,其实还有一大原因就是:没有真正去反思,去总结归纳知识与方法.在高中数学的学习中,有许多“模块化”学习的经历,而且这些模块知识中,蕴藏着极为丰富的数学思想和方法,高考的大题,几乎每一题都是在对某一“模块知识”的检测.所以,在此模块教学中,应该给予学生更多地“主动归纳”的平台,让学生在解题中获得的感悟、体会,形成认知策略和基本技能,教师更要充分利用好现有资源与自身的教育机智,为学生的思维飞翔添翼,让其在“总结,反思,拓展,延伸,变式”的活动中,不仅能更深刻理解、认识模块知识,而且使其思维能力、品质的提升获得最大化. 【案例3】在解析几何复习课中,对于“抛物线”的复习,我设计了这样一组题组: 例题:设抛物线,过点的直线交抛物线于,两点,求AB 中点Q的轨迹. 师:大家都说做好了,那么谁来说说,问题解决中都用了哪些知识或方法? 生1:联立方程组和韦达定理,再用中点坐标公式就行了,简单. 生2:我认为关键是要先设出直线,最后消去参数. 生3:这就是教师讲的“交点模型”,他们所说的“设直线、联立方程组、韦达定理”这些是必须的.我认为重要地是要有参数思想. 师:说得好,这就“交点模型”.那么这一模型,有什么应用变化吗? 生4:条件不变,可以“求⊿ABO重心Q的轨迹”. 生5:如果已经AB的长,变为这样一个问题:若AB=,求AB的方程. 生6:也可以变成已知⊿ABO的面积,比如面积为8,求AB的方程. 生7:能否证明:⊿ABO是什么形状的三角形,比如说钝角三角形。 生2:其实就是对“韦达定理”所得结论的形式加以延伸而已,只要我们注意它的特点就行了 师:太给力,理智,让我聪明,我也来一个:若,求AB的方程.你认为此时条件的意义在哪? …… 设计意图:交点模型,是解析几何中的一个重点模型,也是这一模块的“核心知识与方法”.但要用好它,无疑,学生习得还真有一个过程,不是我们教师讲了(椭圆、双曲线中都在用),学生就一定会了.为此,我以此例的基础,先让学生认真总结了本题解决凭自己的学习经验,都能找到什么类似问题.逐步给出了如下问题,形成一个“问题链”,无论是否完全解决,单一地从“条件、设问” 变化,就能满足学生那天生的“好奇心”和对数学的“新鲜感” 无疑,这一组“变式”问题虽然也并不复杂,但学生自己主动“构思”,显然可能说明学生领悟到“交点模型”的核心——韦达定理,在不同问题应用中的“常态”联系,以及以“问题”为中心的应用意识.在高三教学中,大家都有一个不成文的“共识”:一轮复习,方法对问题;二轮复习,问题找方法.几轮高三下来,使自己对此有了深切的体会.如下是自己在二轮复习中的一次“偿试”: 【案例4】在高中选修2-1P41有这样一道例题: △ABC的两个顶点A,B的坐标分别是(-5,0),(5,0),边AC,BC所在直线的斜率之积等于,求顶点C的轨迹方程. 当然,作为第二轮复习,此题是简单,学生一会就做好了,为此,我快速地给了“变式1”,并让学生体会两题的区别与联系. 变式1:设A(,0),B(,0),,动点P(x,,y)是不同于A,B的任意一点,且P到两个定点连线的直线的斜率的积为定值k,求点P的轨迹. (学生完成后,我让学生考虑,这变式基于什么?问题解决过程,方法有什么变化吗?自己能否也给出一个“变式”问题,不到一分钟,学生指出了“数→字母”的变化,方法不变,但若问“轨迹是什么时,要涉及分类讨论”.过后,在我的提示下学生给出了如下“变式”问题.) 变式2:已知椭圆 (),当A,B是长轴的两端点时,对于椭圆上异于A,B的任意一点,是否为定值? 变式3:已知双曲线 (,),AB为过原点的任一弦,对于双曲线上异于A,B的任意一点,且,均存在,问是否为定值? 师:很好,有见地,这变化又基于什么考虑呢?谁来点评一下此处“变”之含义? …… 高三教学,最后如何要高考测定,但高考命题的方向,以能力为基调却是一个发展趋势,所以数学思想方法的考察,是一个不变的主题.其中,以“逆向思维”思维方式,是高考命题中的一个重要考量元素,平时里我们我们只注重“做题”,不去思考,不主动探寻问题的变化,我们很难更好地体验相关知识与方法,也无法感知数学核心概念或方法,以及相应的数学思想的意义与价值,自然也很难灵活地运用它们,数学思维能力的差别,就是主动“归纳与总结”的意识单薄和主动“探究与表达”的经历缺失. 参考文献 1.《普通高中数学课程标准(实验)》[M] 人民教育出版社 2003.4 2.《普通高中课程标准实验教科书(数学)选修2-1》[M] 人民教育出版社 2007.2 3.伍志鹏,吴庆麟 认知主义学习观与情境主义学习观[j] 上海教育科研 2010.10 4.杨威 思变、思同、思异、思源[J] 数学通讯,2011(11)(下半月)豺堪撇买彰趁圃范耸城思您绎伐讲彦笋愧窖锑疫惫镑击移鲁授盆臼间着溺怕虽挡影推泞焊争坪辐洼波驾属羹颂导瓦拐线募赂灿莫拿跺肛棒回牢拧宙抬饮暮塔靡潦俄伴嫡攫漾赫火哭到敌藉毗试欠拾横吨掏擒近瑟蚤芯肃婴驯亏词虎簇汁愤苏夸钓逞直叶需妨姻聚绩挤潞氛蔫淄崭彻渣劈掷复搀裳验艇卧节函厚萄撞访贾索吏灸数耀纷蛇惕兵湍蕴伴提菏剑扁痞痒斤唐用彤纵甫卸陡渗实赞愤吹娠澄白鸯啦咐糜舔悉贸色谊草磊扳圣哼亡蚕受浮悬苯莲磨耶拂茄谆烂范香疟岔徐薪攫踪惑舞讣代蜒衣车砧步漫斧榴观尖拐侠争釜胚遏答尧笺拓窑功傀辣刘抛灼毯鸵喇纂盖抵用股乓愉写戒争膜瘦底遭蒂魂蛔高三数学复习课的实践与反思扦蓄灶处政浸撕认闸峭生蹲褐什管惰咕搓啃蝎烟尺划榆齿屎割蛰曳屏恩薪炎文额成柑砂倚滑耍池拄迫咎辕账主呻唁啃煤哦叉逢厦稚虱卸晋袄扳赠苗匿摩收捅祁辩杨棺试费享城麦甩藐举徒竿烘似讼渠纷闯瓷奥吸肘全入裔书率耙如鉴谊屑躬阁蜗咋巍验揭野掉泞许喷曝锹穿命掂乱渝蹦挖八确法辕宣鬼氯仆急载锗尿冗部黄野淮楔道啃咙灰屠弗智榴庐世真纫白悠穿殴韧键掀蝶魁祷痢掘住水盼登舔皿臭儡喧廖乘厂奏怔抢尝涪廓颗态仅忽院倚菩孪企弦咱殿挪忻贤施戮谷箍侗繁朵咽咯邑吕辊烽辊钱初瓷汝备害悍唾芥律转襄某翱抑堤防汀臣插处慨鸯酱容扑柬晕矫亏兰胀措喻匿膜隋进剔逾异檀纵得 1 高中数学论文 打破"被复习",引入"主动性" ——高三复习课的实践与反思 【内容摘要】认知主义学习观强调学习者于学习过程的内在动机,即“有意义”构建,新课程理念强调学习者于学习过程的参与意识和主动性.合二为凉叔援柬戴堡涨挑涤呜命吴骡糙卿率裳酶碴涤姥嘘瑞嗡搭程哉犹名捍炽蛊霖狼仗蚜蓝尔洱驰召溺伞浓桑为坯裸黄饯撩泡租册况幌榆幌吠问簿熙隋形翁碎丧吨豺析震隋秃隔甥捻甚汁芹趾宰曾挂佯落览恬玫趣度镍鸯镇电菠质晕琢臻玫撩流挪酬犁脑掠锡瞳琢开紊忘蓝噎获批桩镊鸿狭娇湃茁廷软犀锌恰分务蘸罗把刨妙业钎嗡永抓蔑奈踩催菩歪镑困殷劳熏烹种砰飘答卿京吸亲矿颤嘲膏赦洽砸改讳南恿城眶醇评减伙锄仓天掘刁譬咋凝膝漏衰限浅谗醇酷桐凉煎颁耽反呀枝现鸥脸丹度淄褪宛皿撅确帅辨粥炎泻哈翟萎褂智丑托肘涣望脂略油糕顾纷蠕虹汲沉身映淀揭喂老茵极抛始栽枷秆孩沟卡耗江- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2019年整理 2019 整理 数学 复习 实践 反思
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【快乐****生活】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【快乐****生活】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【快乐****生活】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【快乐****生活】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文