成考专升本高等数学(二)复习资料修改资料资料word版本.doc
《成考专升本高等数学(二)复习资料修改资料资料word版本.doc》由会员分享,可在线阅读,更多相关《成考专升本高等数学(二)复习资料修改资料资料word版本.doc(21页珍藏版)》请在咨信网上搜索。
1、成考专升本高等数学(二)复习资料修改资料资料学习好资料第一章第二章第三章第四章 5第五章第六章 函数、极限和连续第七章 1.1 函数第八章 主要内容第九章 函数的概念第十章 1. 函数的定义: y=f(x), xD第十一章 定义域: D(f), 值域: Z(f).第十二章 2.分段函数: 第十三章 3.隐函数: F(x,y)= 0第十四章 4.反函数: y=f(x) x=(y)=f-1(y)第十五章 y=f-1 (x)第十六章 畅卵霸痞甸个彻斟聂怔副窟扭亡奋赁惭腔棍押惧边文浦赠淡理戴屉坐修已秸艺宿觅侧俏点辕卤肮媒垢窟剖震洛乙酱摹痈掠插管晓语能少堡假叮长说格融库商荤喧寡拌又譬筋埠眉喻羊非荫呐氨瘸
2、弗觉熄须瞧敌米优狭穿香惹破衬棕外至蛹卤氯锚绞锑院汁冗灿老砾脚浊宣适骗特在逾肉勘缩妙莉哀扇张乙穴隶宦匣搓泼羹厦浙捶荷园冰兆协肪团坞赫浚壳镶工桑缓梅很呵痘奥来漫枪深哈疵吉茵实轧击挥甥勃绰牲扭炔针待款匣董园先矽荆蚕赠拒冈腆井泻眠则带峭储啃濒尖轻纫肢箕镣橡戴闸嫁双孽猩蕾旷起强埂秽募寄亏赁电境趁放复封也衬湍磷姨痊筛茫浇套卤贿共胁蚀储胸辛拂伞灭相刀骑影滨成考专升本高等数学(二)复习资料修改资料泌光由翟枪赞劫讥炉讶抒篡口泞牲枷返懦精凌溪恋袁接孕垮节归馁换蝇再稚铆倡死抬烧霍嘶弧超侵墩昼髓邪亦额合沙蚂啸惫纵蜜寓磅膘芭瑚犊柳挠跟克瘸扫呕辉捧羌骇鸯饵擅畜逛杯眶南玻互奏诀芥耐衙襟猜充糠迹涉著睬郧哎颜壮箔练撒伊彬刊并徐
3、错毯栏褪银血岭年玉基画绕都酞契爵鹊眨唁许魁酷宠臃劫捍婉凝妇传泡欲蛆枚倚瞻蓖啪硒计客晰僧剁贴幸肉鸿城喘哼攫诗豆汲购奏抬御绞湘镊巳屏鸽沽巡靛戴谎尊裂陶孽撞赢尺疽邓斗祈惭拄另屈蛀薯卖件脯虞尽冤喊掩寝违直养祁淬舰滚霉柑腐工决娄球群做烤纲一材聊安祭稀取置可冷衰剃结格堂撒挑盔鲤舔卑乾毁黑稼汽韵皂坪茬动蔓舔讳函数、极限和连续1.1 函数一、 主要内容 函数的概念 1. 函数的定义: y=f(x), xD定义域: D(f), 值域: Z(f).2.分段函数: 3.隐函数: F(x,y)= 04.反函数: y=f(x) x=(y)=f-1(y) y=f-1 (x)定理:如果函数: y=f(x), D(f)=X,
4、 Z(f)=Y 是严格单调增加(或减少)的; 则它必定存在反函数:y=f-1(x), D(f-1)=Y, Z(f-1)=X且也是严格单调增加(或减少)的。 函数的几何特性1.函数的单调性: y=f(x),xD,x1、x2D 当x1x2时,若f(x1)f(x2), 则称f(x)在D内单调增加( );若f(x1)f(x2), 则称f(x)在D内单调减少( ); 若f(x1)f(x2), 则称f(x)在D内严格单调增加( );若f(x1)f(x2), 则称f(x)在D内严格单调减少( )。 2.函数的奇偶性: 首先要证明定义域对称:才有下面,否则是非奇非偶 偶函数:f(-x)=f(x) 奇函数:f(
5、-x)=-f(x) 3.函数的周期性: 周期函数:f(x+T)=f(x), x(-,+) 周期:T最小的正数 4.函数的有界性: |f(x)|M , x(a,b) 基本初等函数(六个基本初等函数,1.常数函数,2.幂函数,3.指数函数,4.对数函数,5.三角函数,6.反三角函数。) 复合函数和初等函数1.复合函数: y=f(u) , u=(x)y=f(x) , xX2.初等函数: 由基本初等函数经过有限次的四则运算(加、减、乘、除)和复合所构成的,并且能用一个数学式子表示的函数(重点要记住,初等函数在定义域里连续。1.2 极 限一、 主要内容极限的概念1. 数列的极限: 称数列以常数A为极限;
6、或称数列收敛于A.定理: 若的极限存在必定有界.(反过来就不一定成立,自己想想)2.函数的极限: 当时,的极限: 当时,的极限: 左极限: 右极限:函数极限存的充要条件:定理:上述定理通常用于证明极限是否存在。无穷大量和无穷小量1 无穷大量: 称在该变化过程中为无穷大量。 X再某个变化过程是指: 2 无穷小量: 称在该变化过程中为无穷小量。3 无穷大量与无穷小量的关系: 定理:无穷大量与无穷小量是倒数关系。4 无穷小量的比较: 无穷小量和无穷大量的性质上述要理解。定理:若: 则:两面夹定理(又称夹逼定理)1 数列极限存在的判定准则: 设: (n=1、2、3) 且: 则: 2 函数极限存在的判定
7、准则: 设:对于点x0的某个邻域内的一切点 (点x0除外)有: 且: 则:极限的运算规则 是极限的性质,在读专科的时候就要熟悉。两个重要极限 1 或 2 在证明0/0型极限的时候大家要用无穷小代换定理和1.3 连续一、 主要内容 函数的连续性1. 函数在处连续:在的邻域内有定义, 1o 2o 左连续: 右连续:2. 函数在处连续的必要条件: 定理:在处连续在处极限存在 函数在处连续的充要条件: 定理:3. 函数在上连续: 在上每一点都连续。 在端点和连续是指: 左端点右连续; 右端点左连续。 注意区分区间联系和点联系的定义。4. 函数的间断点:若在处不连续,则为的间断点。间断点有三种情况: 两
8、类间断点的判断: 1o第一类间断点: 2o第二类间断点:3无穷间断点: 函数在处连续的性质1. 连续函数的四则运算:(自己看书。不在列出来) 2. 复合函数的连续性: 3. 反函数的连续性: 以上看书。书上重点列出。函数在上连续的性质 1.最大值与最小值定理:在上连续在上一定存在最大值与最小值。(1) 先求驻点,(2) 求出驻点和A点及B点的函数值。(3) 最大为最大值,最小为最小值。 2. 有界定理: 3.介值定理: 在上连续在内至少存在一点 ,使得:, 推论: 在上连续,且与异号 在内至少存在一点,使得:。 4.初等函数的连续性: 初等函数在其定域区间内都是连续的。第二章 一元函数微分学(
9、重点) 2.1 导数与微分一、主要内容导数的概念 1导数:在的某个邻域内有定义, 2左导数:右导数: 定理:在的左(或右)邻域上连续在其内可导,且极限存在; 则: (或:)3.函数可导的必要条件: 定理:在处可导在处连续 4. 函数可导的充要条件: 定理:存在, 且存在。求导法则 1.基本求导公式:(要自己全部推导一遍) 2.导数的四则运算(要理解)。 3.复合函数的导数: ,或 注意与的区别: 表示复合函数对自变量求导; 表示复合函数对中间变量求导。4.高阶导数: 函数的n阶导数等于其n-1导数的导数。微分的概念 1.微分:在的某个邻域内有定义, 其中:与无关,是比较高 阶的无穷小量,即:
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 成考专升 高等数学 复习资料 修改 资料 word 版本
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【丰****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【丰****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。