![点击分享此内容可以赚币 分享](/master/images/share_but.png)
高中数学三角函数模型的简单应用提高知识讲解新人教A版必修1.doc
《高中数学三角函数模型的简单应用提高知识讲解新人教A版必修1.doc》由会员分享,可在线阅读,更多相关《高中数学三角函数模型的简单应用提高知识讲解新人教A版必修1.doc(7页珍藏版)》请在咨信网上搜索。
三角函数模型的简单应用 【学习目标】 1.熟练掌握三角函数的性质,会用三角代换解决代数、几何、函数等综合问题; 2.利用三角形建立数学模型,解决实际问题,体会三角函数是描述周期变化现象的重要函数模型. 【要点梳理】 要点一:三角函数模型的建立程序 收集数据 画散点图 选择函数模型 检验 求函数模型 用函数模型解决实际问题 要点二:解答三角函数应用题的一般步骤 解答三角函数应用题的基本步骤可分为四步:审题、建模、解模、结论. (1)审题 三角函数应用题的语言形式多为文字语言和图形语言,阅读材料时要读懂题目所反映的实际问题的背景,领悟其中的数学本质,在此基础上分析出已知什么,求什么,从中提炼出相应的数学问题. (2)建模 根据搜集到的数据,找出变化规律,运用已掌握的三角知识、物理知识及其他相关知识建立关系式,在此基础上将实际问题转化为一个三角函数问题,实现问题的数学化,即建立三角函数模型.其中要充分利用数形结合的思想以及图形语言和符号语言并用的思维方式. (3)解模 利用所学的三角函数知识,结合题目的要求,对得到的三角函数模型予以解答,求出结果. (4)结论 将所得结论转译成实际问题的答案,应用题不同于单纯的数学问题,既要符合科学,又要符合实际背景,因此,有时还要对于解出的结果进行检验、评判. 要点诠释: 实际问题的背景往往比较复杂,而且需要综合应用多门学科的知识才能完成,因此,在应用数学知识解决实际问题时,应当注意从复杂的背景中抽取基本的数学关系,还要调动相关学科知识来帮助解决问题. 【典型例题】 类型一:三角函数周期性的应用 例1.如图所示,摩天轮的半径为40 m,O点距地面的高度为50 m,摩天轮做匀速运动,每3 min转一圈,摩天轮上的P点的起始位置在最低点处,已知在时刻t(min)时点P距离地面的高度f(t)=Asin(ωt+φ)+h. (1)试确定在时间t min时P点距离地面的高度; (2)在摩天轮转动的一圈内,有多少时间P点距离地面超过70 m? 【思路点拨】(1)由实际问题求出三角函数中的参数A,h,及周期T,利用三角函数的周期公式求出ω,通过初始位置求出φ,求出f(t).(2)解不等式可得. 【答案】(1)(2)1分钟 【解析】(1)以中心O为坐标原点建立如图所示的坐标系,由题意可知:A=40,h=50,T=3,,即,又,,,所以. (2)令, 所以,所以, 所以,所以3k+1<t<3k+2. 令k=0,得1<t<2. 因此,共有1分钟时间距地面超过70 m. 【总结升华】 实际问题的解决要求我们在阅读材料时读懂题目所反映的实际问题的背景,领悟其中的数学本质,将问题数学化,自行假设与设计一些已知条件,提出解决方案,从而最终解决问题. 举一反三: 【变式1】如图,某市拟在长为8 km的道路OP的一侧修建一条运动赛道,赛道的前一部分为曲线段OSM,该曲线段为函数,x∈[0,4]的图象,且图象的最高点为;赛道的后一部分为折线段MNP.为保护参赛运动员的安全,限定∠MNP=120°.求A,ω的值和M,P两点间的距离. 【答案】 5 【解析】 依题意,有,, 又,∴.∴,x∈[0,4]. ∴当x=4时,.∴M(4,3).又P(8,0), ∴(km). 类型二:三角函数模型在天气中的应用 例2. 下表是某地一年中10天测量的白昼时间统计表:(时间近似到0.1小时) 日期 1月 1日 2月 28日 3月 21日 4月 27日 5月 6日 6月 21日 8月 13日 9月 20日 10月 25日 12月 21日 日期位置 序号x 1 59 80 117 126 172 225 263 298 355 白昼时间 y(小时) 5.6 10.2 12.4 16.4 17.3 19.4 16.4 12.4 8.5 5.4 (1)以日期在365天中的位置序号x为横坐标,白昼时间y为纵坐标,在给定坐标(如下图)中画出这些数据的散点图; (2)试选用一个形如的函数来近似描述一年中白昼时间y与日期位置序号x之间的函数关系;(注:①求出所选用的函数关系式;②一年按365天计算) (3)用(2)中的函数模型估计该地一年中大约有多少天白昼时间大于15.9小时? 【思路点拨】先作散点图,结合图象求出中的,最后利用函数模型,解不等式可得. 【答案】(1)略(2)(1≤x≤365,x∈N*)(3)121天 【解析】 (1)如图所示. (2)由散点图知白昼时间与日期序号之间的函数关系近似为, 由题中图形知函数的最大值为19.4,最小值为5.4, 即ymax=19.4,ymin=5.4, 由19.4-5.4=14,得A=7; 由19.4+5.4=24.8,得t=12.4. 又T=365,∴. ∴(等于,,,均可). ∴(1≤x≤365,x∈N*). (3)由y>15.9,得, ∴, ,∴112≤x≤232. ∴该地大约有121天白昼时间大于15.9小时. 【总结升华】现实生产、生活中,周期现象广泛存在,三角函数还是刻画周期现象的重要数学模型,在解决实际问题时要注意搜集数据,作出相应的“散点图”,通过观察散点图并进行函数拟合,而获得具体的函数模型,最后利用这个函数模型来解决实际问题. 举一反三: 【变式1】 估计某一天的白昼时间的小时数D(t)可由下式计算:,其中t表示某天的序号、t=0表示1月1日,以此类推,常数k与某地所处的纬度有关. (1)如在波士顿,k=6,试画出函数D(t)在0≤t≤365时的图象. (2)在波士顿哪一天白昼时间最长?哪一天白昼时间最短? (3)估计在波士顿一年中有多少天的白昼时间超过10.5小时? 【答案】(1)略(2)6月20日 12月20日(3)243天 【解析】 (1)k=6时,.先用五点法画出的简图如图,由和,得t=79和t=444,列出下表: t 79 170.25 261.5 352.75 444 f(t) 0 3 0 -3 0 若t=0,. ∵的周期为365, ∴.将,t∈[0,365]的图象向上平移12个单位长度,得到,0≤t≤365的图象,如右图所示. (2)白昼时间最长的一天,即D(t)取得最大值的一天,此时t=170,对应的是6月20日(闰年除外),类似地,t=353时D(t)取最小值,即12月20日白昼最短. (3)D(t)>10.5,即,,t∈[0,365]. ∴292>t>49,292-49=243.约有243天的白昼时间超过10.5小时. 类型三:三角函数模型在物理学中的应用 例3.已知弹簧上挂着小球做简谐运动时,小球离开平衡位置的距离s(cm)随时间t(s)的变化规律为: ,t∈[0,+∞). 用五点法作出这个函数在一个周期内的简图,并回答下列问题: (1)小球在开始运动(t=0)时,离开平衡位置的位移是多少? (2)小球上升到最高点、下降到最低点时离开平衡位置的位移分别是多少? (3)经过多少秒,小球往复运动一次? 【答案】(1) (2)(3)3.14 【解析】 列表如下: t 0 π 2π s 4 0 -4 0 作图(如图). (1)将t=0代入, 得. 以竖直向上作为位移的正向,则小球开始运动时的位移是cm,方向为正向. (2)由题图可知,小球上升到最高点离开平衡位置的位移是-4 cm,负号表示方向竖直向下. (3)由于这个函数的周期,所以小球往复运动一次所需的时间为π≈3.14 s.反映在图象上,正弦曲线在每一个长度为π的区间上,都完整地重复变化一次. 【总结升华】 (1)注意简谐运动中自变量的范围为[0,+∞). (2)正确理解并识记简谐运动周期、频率、振幅的概念以及实际意义是解决本题的关键. 举一反三: 【变式1】一个单摆,如图所示,小球偏离铅垂线方向的角为rad,与时间t满足关系式. (1)当时,的值是多少?并指出小球的具体位置; (2)单摆摆动的频率是多少? (3)小球偏离铅垂线方向的最大摆角是多少? 【答案】(1)0(2)(3) 【解析】 (1)当时,,这时小球恰好在平衡位置; (2)因为单摆摆动的周期,所以频率; (3)令t=0,得的最大值为1.故有最大值rad,即小球偏离铅垂线方向的最大摆角是rad. 例4.如图所示,表示电流I与时间t的关系式(A>0,)在一个周期内的图象. (1)试根据图象写出的解析式; (2)为了使中t在任意一段s时间内I能同时取得最大值|A|和最小值-|A|,那么正整数的最小值为多少? 【思路点拨】由图象,可求出 ,因此可写出解析式.(2)要满足题意,则必须,解之可得. 【答案】(1)(2)629 【解析】 (1)由图可知,A=300,周期, ∴. 当时,,即. 故图象的解析式为. (2)要使t在任意一段s的时间内能同时取得最大值和最小值,必须使得周期. 即. 由于为正整数,故的最小值为629. 【总结升华】 由三角函数的图象求解析式的方法是:根据函数图象性质,结合“五点法”作图时的对应关系,分别确定A,,.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高中数学 三角函数 模型 简单 应用 提高 知识 讲解 新人 必修
![提示](https://www.zixin.com.cn/images/bang_tan.gif)
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【天****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【天****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文