第七章假设检验.doc
《第七章假设检验.doc》由会员分享,可在线阅读,更多相关《第七章假设检验.doc(34页珍藏版)》请在咨信网上搜索。
1、第七章假设检验 第七章 假设检验学习目的 假设检验包括参数检验与非参数检验,是一种最能体现统计推断思想和特点的方法。通过本章学习,要求:1.掌握统计检验的基本原理,理解该检验的规则及犯两类错误的性质;2.熟练掌握总体均值、总体成数及总体方差指标的各种检验方法,包括:检验、检验和值检验;3.掌握检验、符号检验、秩和检验及游程检验四种基本的非参数检验方法。课程内容要点第一节 假设检验的基本原理一、假设检验的基本原理“小概率原理”:小概率事件在一次试验中几乎是不会发生的。事先所做的假设,是假设检验中关键的一项工作。它包括原假设和备选假设两部分。原假设是建立在假定原来总体参数没有发生变化的基础之上的。
2、备选假设是原假设的对立,是在否认原假设之后所要接受的,通常这是我们真正感兴趣的一个判断。二、假设检验的规则与两类错误1、假设检验的规则假设检验的步骤:(1)首先根据实际应用问题确定合适的原假设和备选假设;(2)确定检验统计量,通过数理统计分析确定该统计量的抽样分布;(3)给定检验的显著性水平。在原假设成立的条件下,结合备选假设的定义,由检验统计量的抽样分布情况求出相应的临界值,该临界值为原假设的接受域与拒绝域的分界值;(4)从样本资料计算检验的样本统计量,并将其与临界值进行比较,判断是否接受或拒绝原假设。从检验程序我们可以看出,统计量的取值范围可以分为接受域和拒绝域两个区域。拒绝域正是统计量取
3、值的小概率区域。按照我们将这个拒绝域安排在所检验统计量的抽样分布的某一侧还是两端,可以将检验分为单侧检验或双侧检验。双侧检验中,又可以根据拒绝域,是在左侧还是在右侧而分为左侧检验和右侧检验。对于这些双侧、左、右单侧检验,我们要结合备选假设来考虑。在检验规则中,我们经常碰到两种重要的检验方法:检验与检验。值检验的原理:给出原假设后,在假定原假设正确的情况下,参照备选假设,可以计算出检验统计量超过或者小于(还要依照分布的不同、单侧检验、双侧检验的差异而定)由样本所计算的检验统计量的数值的概率,这便是值;而后将此概率值跟事先给出的显著性水平值进行比较。如果该值小于,否定原假设,取对应的备选假设。如果
4、该值大于,我们不就能否定原假设。2、两类错误当原假设实际为真,但我们却依据样本信息,做出拒绝的错误结论时,称为“弃真”错误;当原假设实际为假,而我们却错误接受时,称为“纳伪”错误。通常记显著性水平为犯“弃真”错误的可能性大小,为犯“纳伪”错误的可能性大小。由于两类错误是一对矛盾,在其他条件不变得情况下,减少犯“弃真”错误的可能性大小(),势必增大犯“纳伪”错误的可能性大小(),也就是说,的大小和显著性水平的大小成相反方向变化。三、检验功效可以用来表明所做假设检验工作好坏的一个指标,我们称之为检验功效。它的数值表明我们做出正确决策的概率为。解决增强检验功效的唯一办法只有增大样本容量,这样既能保证
5、满足取得较小的,又能取得较小的值。第二节 总体参数假设检验一、总体均值的假设检验1、总体方差已知对于双侧检验,建立的假设为:对于左(右)单侧检验来说,建立的假设为: 检验统计量 原假设的拒绝域为:样本统计量的值满足:(双侧检验);(左单侧检验);(右单侧检验)。当z值处于拒绝域中时,我们就可拒绝原假设,否则不能拒绝原假设。2、总体方差未知对于双侧检验,建立的假设为:对于左(右)单侧检验来说,建立的假设为:检验统计量,其中为样本标准差。原假设的拒绝域为:样本统计量的值满足(双侧检验);(左单侧检验);(右单侧检验)。当值落入拒绝域,就拒绝原假设,否则不能拒绝原假设。二、两个总体均值之差的检验1、
6、两总体方差已知 双侧检验原假设为:,备选假设为 检验统计量:。 该检验的否定域:。反之不能拒绝原假设。 左单侧检验原假设与双侧一样,备选假设为检验的否定域为:计算的样本统计量满足:(3) 右单侧检验原假设与双侧一样,备选假设为检验的否定域为:计算的样本统计量满足:2、两总体方差未知但相等双、单侧检验的原假设都相同,均为。只是在双侧检验时,备选假设;在左单侧检验时,备选假设为;在右单侧检验时,备选假设为。检验统计量:。对于双侧检验,原假设的拒绝域为:。反之就不能拒绝原假设。对于左、右单侧检验,左单侧检验拒绝原假设的范围是:。右单侧检验拒绝原假设的范围为:。三、总体成数的假设检验1、单样本成数检验
7、建立假设:检验统计量。将样本统计量与临界值进行比较,若,则否定原假设;反之则不能拒绝原假设。当然,如果对应的原假设是单边的,即为。对应的临界值应该是,其余的计算和判断规则如上面所述。2、两个样本总体成数差的检验检验统计量。若建立的原假设为:,相应的临界值为;而如果建立的原假设为:,相应的临界值为。能否拒绝原假设的判断规则如前面所述。四、正态总体方差的假设检验原假设为,备选假设:检验统计量 五、两个正态总体方差比的检验1、两总体均值已知检验统计量,其中 ;。原假设为:。对于双侧检验,备选假设为:,若则拒绝原假设,反之,则不能拒绝原假设。对于左单侧检验: 备选假设:,拒绝域为样本统计量。对于右单侧
8、检验:备选假设:,拒绝域为样本统计量。2、两样本均值未知建立的原假设为:,检验统计量,其中和。对于双侧检验:备选假设:,当样本统计量或时,我们就拒绝原假设,反之不能拒绝原假设。对于左单侧检验:建立的备选假设:,供判断的临界值为,拒绝域为样本统计量。对于右单侧检验:建立的备选假设:,供判断的临界值为,拒绝域为样本统计量。第三节 非参数检验一、非参数检验概述实际问题中,可能无法获知或者是不一定很了解总体的分布类型,而只是通过样本来检验关于总体分布的假设。这种检验方法称为非参数检验。非参数检验与传统的参数检验比较有一些优缺点;对检验的限制更少,更加避免先见偏差,具有较好的稳健性;可以在更少样本资料要
9、求的情况下进行,在一定程度上弥补有些实际中样本资料不足等的缺陷;可以弥补上述参数检验中碰到的无法运用的属性资料问题,然而,同时也就可能损失了其中所包含的另外信息。二、检验检验是利用分布的原理,通过对样本数据进行分析来对样本所属的总体情况进行判断的一种检验方法。1分布拟合检验原假设为:。其中为总体的分布函数,是某个事先假定的总体分布函数。检验统计量:。其中为各个样本区间内的实际频数,为落在各个区间的理论概率值,为待估计的参数个数。拒绝原假设的值域:,如果样本统计量大于,那么就可以拒绝原假设,否则不能拒绝原假设。2独立性检验该检验主要是考察多个变量之间是否有关联,如果变量之间没有关联性,那么就说变
10、量之间是相互独立的。我们这里的变量主要是定类、定序的资料。为了分析变量之间的关联性,我们需要将资料整理成列联表的形式。列联表是多行多列纵横交错所形成的一个表体。三、符号检验1单样本的符合检验在单样本的情况下,符号检验适用于检验总体中位数是否在某一指定的位置。中位数检验的基本原理是,假设总体中位数的真值,然后在实际抽取的容量为的样本中,将每个观测值均减去,并只记录其差值的符合,即为。若,就略去不计。接着分别计算“”的个数(用表示)和“”的个数(用表示)。理论上,当中位数为真时,得到的正负号个数应该接近相等,即。若从样本中得到的和相差较远,那么就有理由拒绝。该检验中所用的判别标准是由二项分布临界值
11、提供的,在大样本下,可由正态分布来逼近。2配对样本的符号检验原假设为:,备选假设:。设配对样本、序列中,的个数为,的个数为,如果,我们就忽略,不予考虑。所以有。取,在显著水平下,有:。临界值是根据二项分布的原理来求得的,也可以从编好的临界值表查得。如果,我们就拒绝原假设,否则就不能拒绝原假设。3非配对样本的符号检验假定两样本,的容量分别为,。原假设仍为:。可以将资料转化成列联表的形式,利用检验来进行分析。具体的方法为:将所抽取的两组样本资料混和在一起,将此个观测值按照递增或递减的顺序进行排序,求得中位数。将两样本中大于或小于中位数的个数(频数)分别以列联表的形式列出。这样我们就可利用检验。四、
12、秩和检验秩和检验是一种用样本秩代替样本值的检验方法,用该法可以检验两个总体的分布函数是否相等的问题。所谓秩,就是样本观测值在序列中的排序号。建立假设:。分别从这两个总体、抽取、个样本,。不失一般性,我们假定。将两组样本混合,并按小到大排序,每个样本对应的序号称为该样本的秩。计算取自总体所对应的样本的秩和,为秩和检验的统计量。当的值超过临界值时,就可以拒绝两总体的分布没有显著性差异的原假设。对于小样本(、都未超过10),临界值的数值可以通过查找秩和检验值表,求得上下限。对于大样本(、都超过10),此时变量近似服从正态分布,该分布的均值、标准差分别为:,此时,可以将标准化为统计量,通过查找正态分布
13、表来确定临界值,。五、游程检验游程检验用来检验样本是否为随机地取自于总体。所谓游程,就是在一个序列中出现某一类字符片断,对应的每一同类游程出现的次数,则称为游程数。不同游程数的总和,称为总游程数记为。当序列字符个数均较小时(一般小于20),我们可以直接从游程表得出临界值。在大样本场合中(单个字符数大于20),总游程数近似服从正态分布,因而可以用正态分布统计量来确定临界值。的均值以及方差为:,统计量:,服从标准正态分布。六、等级相关对于要考察属于定序尺度描述的类型数据的两配对序列之间的相关关系,我们可以应用斯皮尔曼提出的公式来计量它们之间的相关关系,此关系系数称为斯皮尔曼秩相关系数(),即:,其
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 第七 假设检验
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精***】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。