《概率论与数理统计》第二章习题解答.doc
《《概率论与数理统计》第二章习题解答.doc》由会员分享,可在线阅读,更多相关《《概率论与数理统计》第二章习题解答.doc(18页珍藏版)》请在咨信网上搜索。
第二章 随机变量及其分布 1、解: 设公司赔付金额为,则X的可能值为; 投保一年内因意外死亡:20万,概率为0.0002 投保一年内因其他原因死亡:5万,概率为0.0010 投保一年内没有死亡:0,概率为1-0.0002-0.0010=0.9988 所以的分布律为: 20 5 0 P 0.0002 0.0010 0.9988 2、一袋中有5只乒乓球,编号为1、2、3、4、5,在其中同时取三只,以X表示取出的三只球中的最大号码,写出随机变量X的分布律 解:X可以取值3,4,5,分布律为 也可列为下表 X: 3, 4,5 P: 3、设在15只同类型零件中有2只是次品,在其中取三次,每次任取一只,作不放回抽样,以X表示取出次品的只数,(1)求X的分布律,(2)画出分布律的图形。 解:任取三只,其中新含次品个数X可能为0,1,2个。 P x 1 2 O 再列为下表 X: 0, 1, 2 P: 4、进行重复独立实验,设每次成功的概率为p,失败的概率为q =1-p(0<p<1) (1)将实验进行到出现一次成功为止,以X表示所需的试验次数,求X的分布律。(此时称X服从以p为参数的几何分布。) (2)将实验进行到出现r次成功为止,以Y表示所需的试验次数,求Y的分布律。(此时称Y服从以r, p为参数的巴斯卡分布。) (3)一篮球运动员的投篮命中率为45%,以X表示他首次投中时累计已投篮的次数,写出 X的分布律,并计算X取偶数的概率。 解:(1)P (X=k)=qk-1p k=1,2,…… (2)Y=r+n={最后一次实验前r+n-1次有n次失败,且最后一次成功} 其中 q=1-p, 或记r+n=k,则 P{Y=k}= (3)P (X=k) = (0.55)k-10.45 k=1,2… P (X取偶数)= 5、 一房间有3扇同样大小的窗子,其中只有一扇是打开的。有一只鸟自开着的窗子飞入了房间,它只能从开着的窗子飞出去。鸟在房子里飞来飞去,试图飞出房间。假定鸟是没有记忆的,鸟飞向各扇窗子是随机的。 (1)以X表示鸟为了飞出房间试飞的次数,求X的分布律。 (2)户主声称,他养的一只鸟,是有记忆的,它飞向任一窗子的尝试不多于一次。以Y表示这只聪明的鸟为了飞出房间试飞的次数,如户主所说是确实的,试求Y的分布律。 (3)求试飞次数X小于Y的概率;求试飞次数Y小于X的概率。 解:(1)X的可能取值为1,2,3,…,n,… P {X=n}=P {前n-1次飞向了另2扇窗子,第n次飞了出去} =, n=1,2,…… (2)Y的可能取值为1,2,3 P {Y=1}=P {第1次飞了出去}= P {Y=2}=P {第1次飞向 另2扇窗子中的一扇,第2次飞了出去} = P {Y=3}=P {第1,2次飞向了另2扇窗子,第3次飞了出去} = 同上, 故 6、一大楼装有5个同类型的供水设备,调查表明在任一时刻t每个设备使用的概率为0.1,问在同一时刻 (1)恰有2个设备被使用的概率是多少? (2)至少有3个设备被使用的概率是多少? (3)至多有3个设备被使用的概率是多少? (4)至少有一个设备被使用的概率是多少? 7、设事件A在每一次试验中发生的概率为0.3,当A发生不少于3次时,指示灯发出信号。(1)进行了5 次独立试验,求指示灯发出信号的概率 。(2)进行了7次独立试验,求指示灯发出信号的概率 解: 设X为 A发生的次数。 则 n=5,7 B:“指示等发出信号“ ① ② 8、甲、乙二人投篮,投中的概率各为0.6, 0.7,令各投三次。求 (1)二人投中次数相等的概率。 记X表甲三次投篮中投中的次数 Y表乙三次投篮中投中的次数 由于甲、乙每次投篮独立,且彼此投篮也独立。 P (X=Y)=P (X=0, Y=0)+P (X=2, Y=2)+P (X=3, Y=3) = P (X=0) P (Y=0)+ P (X=1) P (Y=1)+ P (X=2) P (Y=2)+ P (X=3) P (Y=3) = (0.4)3× (0.3)3+ [ (2)甲比乙投中次数多的概率。 P (X>Y)=P (X=1, Y=0)+P (X=2, Y=0)+P (X=2, Y=1)+ P (X=3) P (Y=0)+ P (X=3) P (Y=1)+ P (X=3) P (Y=2) =P (X=1) P (Y=0) + P (X=2, Y=0)+ P (X=2, Y=1)+ P (X=3) P (Y=0)+ P (X=3) P (Y=1)+ P (X=3) P (Y=2) = 9、有一大批产品,其验收方案如下,先做第一次检验:从中任取10件,经验收无次品接受这批产品,次品数大于2拒收;否则作第二次检验,其做法是从中再任取5件,仅当5件中无次品时接受这批产品,若产品的次品率为10%,求 (1)这批产品经第一次检验就能接受的概率 (2)需作第二次检验的概率 (3)这批产品按第2次检验的标准被接受的概率 (4)这批产品在第1次检验未能做决定且第二次检验时被通过的概率 (5)这批产品被接受的概率 解:X表示10件中次品的个数,Y表示5件中次品的个数, 由于产品总数很大,故X~B(10,0.1),Y~B(5,0.1)(近似服从) (1)P {X=0}=0.910≈0.349 (2)P {X≤2}=P {X=2}+ P {X=1}= (3)P {Y=0}=0.9 5≈0.590 (4)P {0<X≤2,Y=0} ({0<X≤2}与{ Y=2}独立) = P {0<X≤2}P {Y=0} =0.581×0.5900.343 (5)P {X=0}+ P {0<X≤2,Y=0} ≈0.349+0.343=0.692 10、有甲、乙两种味道和颜色极为相似的名酒各4杯。如果从中挑4杯,能将甲种酒全部挑出来,算是试验成功一次。 (1)某人随机地去猜,问他试验成功一次的概率是多少? (2)某人声称他通过品尝能区分两种酒。他连续试验10次,成功3次。试问他是猜对的,还是他确有区分的能力(设各次试验是相互独立的。) 解:(1)P (一次成功)= (2)P (连续试验10次,成功3次)= 。此概率太小,按实际推断原理,就认为他确有区分能力。 11. 尽管在几何教科书中已经讲过用圆规和直尺三等分一个任意角是不可能的。但每年总有一些“发明者”撰写关于用圆规和直尺将角三等分的文章。设某地区每年撰写此类文章的篇数X服从参数为6的泊松分布。求明年没有此类文章的概率。 解: 12. 一电话交换台每分钟收到呼唤的次数服从参数为4的泊松分布。求(1)每分钟恰有8次呼唤的概率。(2)某一分钟的呼唤次数大于3的概率。 (1) (2) 13. 某一公安局在长度为t的时间间隔内收到的紧急呼救的次数X服从参数为(1/2)t的泊松分布,而与时间间隔的起点无关(时间以小时计)。 (1)求某一天中午12时至下午3时没有收到紧急呼救的概率。 (2)求某一天中午12时至下午5时至少收到1次紧急呼救的概率。 解: ① ② 14、解: (1)、分钟时小时, (2)、故(小时) 所以(分钟) 15、解: 16、解: 17、解: 设服从分布,其分布率为,求的分布函数,并作出其图形。 解一: 0 1 的分布函数为: 18.在区间上任意投掷一个质点,以表示这个质点的坐标。设这个质点落在中任意小区间内的概率与这个小区间的长度成正比例,试求的分布函数。 解:① 当时。是不可能事件, ②当时, 而 是必然事件 则 ③当时,是必然事件,有 19、以X表示某商店从早晨开始营业起直到第一顾客到达的等待时间(以分计),X的分布函数是 求下述概率: (1)P{至多3分钟};(2)P {至少4分钟};(3)P{3分钟至4分钟之间}; (4)P{至多3分钟或至少4分钟};(5)P{恰好2.5分钟} 解:(1)P{至多3分钟}= P {X≤3} = (2)P {至少4分钟} P (X ≥4) = (3)P{3分钟至4分钟之间}= P {3<X≤4}= (4)P{至多3分钟或至少4分钟}= P{至多3分钟}+P{至少4分钟} = (5)P{恰好2.5分钟}= P (X=2.5)=0 20、设随机变量X的分布函数为, 求(1)P (X<2), P {0<X≤3}, P (2<X<);(2)求概率密度fX (x). 解:(1)P (X≤2)=FX (2)= ln2, P (0<X≤3)= FX (3)-FX (0)=1, (2) 21、设随机变量的概率密度为 (1) (2) 求X的分布函数F (x),并作出(2)中的f (x)与F (x)的图形。 解:(1)当-1≤x≤1时: 当1<x时: 故分布函数为: 解:(2) 故分布函数为 (2)中的f (x)与F (x)的图形如下 f (x) x 0 F (x) 2 1 x 0 1 2 22、⑴由统计物理学知,分子运动速度的绝对值服从迈克斯韦尔(Maxwell)分布,其概率密度为 其中,为Boltzmann常数,为绝对温度,是分子的质量。试确定常数。 解: ① 即 ②当时, 当时, 或 23、某种型号的电子的寿命X(以小时计)具有以下的概率密度: 现有一大批此种管子(设各电子管损坏与否相互独立)。任取5只,问其中至少有2只寿命大于1500小时的概率是多少? 解:一个电子管寿命大于1500小时的概率为 令Y表示“任取5只此种电子管中寿命大于1500小时的个数”。则, 24、设顾客在某银行的窗口等待服务的时间X(以分计)服从指数分布,其概率密度为: 某顾客在窗口等待服务,若超过10分钟他就离开。他一个月要到银行5次。以Y表示一个月内他未等到服务而离开窗口的次数,写出Y的分布律。并求P(Y≥1)。 解:该顾客“一次等待服务未成而离去”的概率为 因此 25、设K在(0,5)上服从均匀分布,求方程有实根的概率 ∵ K的分布密度为: 要方程有根,就是要K满足(4K)2-4×4× (K+2)≥0。 解不等式,得K≥2时,方程有实根。 ∴ 26、设X~N(3.22) (1)求P (2<X≤5),P (-4)<X≤10),P{|X|>2},P (X>3) ∵ 若X~N(μ,σ2),则P (α<X≤β)=φφ ∴ P (2<X≤5) =φφ=φ(1)-φ(-0.5) =0.8413-0.3085=0.5328 P (-4<X≤10) =φφ=φ(3.5)-φ(-3.5) =0.9998-0.0002=0.9996 P (|X|>2)=1-P (|X|<2)= 1-P (-2< P<2 ) = =1-φ(-0.5) +φ(-2.5) =1-0.3085+0.0062=0.6977 P (X>3)=1-P (X≤3)=1-φ=1-0.5=0.5 (2)决定C使得P (X > C )=P (X≤C) ∵ P (X > C )=1-P (X≤C )= P (X≤C) 得 P (X≤C )==0.5 又 P (X≤C )=φ ∴ C =3 27、某地区18岁的女青年的血压(收缩区,以mm-Hg计)服从在该地区任选一18岁女青年,测量她的血压X。求 (1)P (X≤105),P (100<X ≤120). (2)确定最小的X使P (X>x) ≤ 0.05. 解: 28、由某机器生产的螺栓长度(cm)服从参数为μ=10.05,σ=0.06的正态分布。规定长度在范围10.05±0.12内为合格品,求一螺栓为不合格的概率是多少? 设螺栓长度为X P{X不属于(10.05-0.12, 10.05+0.12) =1-P (10.05-0.12<X<10.05+0.12) =1- =1-{φ(2)-φ(-2)} =1-{0.9772-0.0228} =0.0456 29、一工厂生产的电子管的寿命X(以小时计)服从参数为μ=160,σ(未知)的正态分布,若要求P (120<X≤200==0.80,允许σ最大为多少? ∵ P (120<X≤200)= 又对标准正态分布有φ(-x)=1-φ(x) ∴ 上式变为 解出 再查表,得 30、解: 31、解: 32、解: 所以为概率密度函数 33、设随机变量X的分布律为: X:-2, -1, 0, 1, 3 P:, , , , 求Y=X 2的分布律 ∵ Y=X 2:(-2)2 (-1)2 (0)2 (1)2 (3)2 P: 再把X 2的取值相同的合并,并按从小到大排列,就得函数Y的分布律为: ∴ Y: 0 1 4 9 P: 34、设随机变量X在(0,1)上服从均匀分布 (1)求Y=eX的分布密度 ∵ X的分布密度为: Y=g (X) =eX是单调增函数 又 X=h (Y)=lnY,反函数存在 且 α = min[g (0), g (1)]=min(1, e)=1 max[g (0), g (1)]=max(1, e)= e ∴ Y的分布密度为: (2)求Y=-2lnX的概率密度。 ∵ Y= g (X)=-2lnX 是单调减函数 又 反函数存在。 且 α = min[g (0), g (1)]=min(+∞, 0 )=0 β=max[g (0), g (1)]=max(+∞, 0 )= +∞ ∴ Y的分布密度为: 35、设X~N(0,1) (1)求Y=eX的概率密度 ∵ X的概率密度是 Y= g (X)=eX 是单调增函数 又 X= h (Y ) = lnY 反函数存在 且 α = min[g (-∞), g (+∞)]=min(0, +∞)=0 β = max[g (-∞), g (+∞)]= max(0, +∞)= +∞ ∴ Y的分布密度为: (2)求Y=2X2+1的概率密度。 在这里,Y=2X2+1在(+∞,-∞)不是单调函数,没有一般的结论可用。 设Y的分布函数是FY(y), 则 FY ( y)=P (Y≤y)=P (2X2+1≤y) = 当y<1时:FY ( y)=0 当y≥1时: 故Y的分布密度ψ( y)是: 当y≤1时:ψ( y)= [FY ( y)]' = (0)' =0 当y>1时,ψ( y)= [FY ( y)]' = = (3)求Y=| X |的概率密度。 ∵ Y的分布函数为 FY ( y)=P (Y≤y )=P ( | X |≤y) 当y<0时,FY ( y)=0 当y≥0时,FY ( y)=P (| X |≤y )=P (-y≤X≤y)= ∴ Y的概率密度为: 当y≤0时:ψ( y)= [FY ( y)]' = (0)' =0 当y>0时:ψ( y)= [FY ( y)]' = 36、(1)设随机变量X的概率密度为f (x),求Y = X 3的概率密度。 ∵ Y=g (X )= X 3 是X单调增函数, 又 X=h (Y ) =,反函数存在, 且 α = min[g (-∞), g (+∞)]=min(0, +∞)=-∞ β = max[g (-∞), g (+∞)]= max(0, +∞)= +∞ ∴ Y的分布密度为: ψ( y)= f [h ( h )]·| h' ( y)| = (2)设随机变量X服从参数为1的指数分布,求Y=X 2的概率密度。 x O y=x2 y 法一:∵ X的分布密度为: Y=x2是非单调函数 当 x<0时 y=x2 ' 反函数是 当 x<0时 y=x2 & ∴ Y~ fY (y) = - = 法二: ∴ Y~ fY (y) = 37、设X的概率密度为 求Y=sin X的概率密度。 ∵ FY ( y)=P (Y≤y) = P (sinX≤y) 当y<0时:FY ( y)=0 当0≤y≤1时:FY ( y) = P (sinX≤y) = P (0≤X≤arc sin y或π-arc sin y≤X≤π) = 当1<y时:FY ( y)=1 ∴ Y的概率密度ψ( y )为: y≤0时,ψ( y )=[ FY ( y)]' = (0 )' = 0 0<y<1时,ψ( y )=[ FY ( y)]' = = 1≤y时,ψ( y )=[ FY ( y)]' = = 0 38、设电流是一个随机变量,它均匀分布在9安11安之间。若此电流通过2欧的电阻,在其上消耗求的概率密度。 解:在上服从均匀分布 的概率密度为: 的取值为 分布函数 39、某物体的温度T (oF )是一个随机变量,且有T~N(98.6,2),试求θ(℃)的概率密度。[已知] 法一:∵ T的概率密度为 又 是单调增函数。 反函数存在。 且 α = min[g (-∞), g (+∞)]=min(-∞, +∞)=-∞ β = max[g (-∞), g (+∞)]= max(-∞, +∞)= +∞ ∴ θ的概率密度ψ(θ)为 法二:根据定理:若X~N(α1, σ1),则Y=aX+b~N (aα1+b, a2 σ2 ) 由于T~N(98.6, 2) 故 故θ的概率密度为: (注:专业文档是经验性极强的领域,无法思考和涵盖全面,素材和资料部分来自网络,供参考。可复制、编制,期待你的好评与关注)- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 概率论与数理统计 概率论 数理统计 第二 习题 解答
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文