分享
分销 收藏 举报 申诉 / 11
播放页_导航下方通栏广告

类型二叉树定价模型.doc

  • 上传人:精****
  • 文档编号:3560169
  • 上传时间:2024-07-09
  • 格式:DOC
  • 页数:11
  • 大小:1.41MB
  • 下载积分:8 金币
  • 播放页_非在线预览资源立即下载上方广告
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    二叉 定价 模型
    资源描述:
    期权定价的二叉树模型 Cox、Ross和Rubinstein提出了期权定价的另一种常用方法 二叉树(binomial tree)模型,它假设标的资产在下一个时间点的价格只有上升和下降两种可能结果,然后通过分叉的树枝来形象描述标的资产和期权价格的演进历程。本章只讨论股票期权定价的二叉树模型,基于其它标的资产如债券、货币、股票指数和期货的期权定价的二叉树方法,请参考有关的书籍和资料。 8.1   一步二叉树模型 我们首先通过一个简单的例子介绍二叉树模型。 例8.1 假设一只股票的当前价格是$20,三个月后该股票价格有可能上升到$22,也有可能下降到$18. 股票价格的这种变动过程可通过图8.1直观表示出来。                     在上述二叉树中,从左至右的节点(实圆点)表示离散的时间点,由节点产生的分枝(路径)表示可能出现的不同股价。由于从开始至期权到期日只考虑了一个时间步长,图8.1表示的二叉树称为一步(one-step)二叉树。这是最简单的二叉树模型。 一般地,假设一只股票的当前价格是 ,基于该股票的欧式期权价格为 。经过一个时间步(至到期日T)后该股票价格有可能上升到 相应的期权价格为 ;也有可能下降到 相应的期权价格为 . 这种过程可通过一步(one-step)二叉树表示出来,如图8.2所示。我们的问题是根据这个二叉树对该欧式股票期权定价。 为了对该欧式股票期权定价,我们采用无套利(no arbitrage)假设,即市场上无套利机会存在。构造一个该股票和期权的组合(portfolio),组合中有 股的多头股票和1股空头期权。如果该股票价格上升到 ,则该组合在期权到期日的价值为 ;如果该股票价格下降到 ,则该组合在期权到期日的价值为 。根据无套利假设,该组合在股票上升和下降两种状态下的价值应该相等,即有                         由此可得                                (8.1) 上式意味着 是两个节点之间的期权价格增量与股价增量之比率。在这种情况下,该组合是无风险的。以 表示无风险利率,则该组合的现值(the present value)为 ,又注意到该组合的当前价值是 ,故有                       即                 将(8.1)代入上式,可得基于一步二叉树模型的期权定价公式为                          (8.2)                                      (8.3) 需要指出的是,由于我们是在无套利(no arbitrage)假设下讨论欧式股票期权的定价,因此无风险利率应该满足: .          现在回到前面的例子中,假设相应的期权是一个敲定价为$21,到期日为三个月的欧式看涨权,无风险的年利率为12%,求该期权的当前价值。 已知:且在期权到期日,当 时,该看涨权的价值为而当 时,该看涨权的价值为 根据(8.3)和(8.2),可得                 . 上述期权定价公式(8.2)和(8.3)似乎与股价上升或下降的概率无关,实际上,在我们推导期权价值时它已经隐含在股票价格中了。不妨令股价上升的概率为 ,则股价下降的概率就是 ,在时间 的期望股票价格为                        如果我们假设市场是风险中性的(risk neutral),则所有证券的价格都以无风险利率增加,故有                        于是,我们有                                          由此可得                            与(8.3)比较,我们发现: ,这就是参数 的含义,我们称之为风险中性状态下股价上升的概率。 8.2   两步二叉树模型 在一步二叉树模型中,股票和期权的价格只经过一个时间步的演化,如果初始时间距期权到期日的时间间隔太长,有可能造成计算误差太大的缺陷。因此,在初始时间与期权到期日之间增加离散的时间点,缩短计算的时间步长,有助于提高计算精度。 现在我们将初始时间距期权到期日的时间T分成两个相等的时间步,则每个时间步长 。假设一只股票的初始价格是 ,基于该股票的欧式期权价格为 ,且每经过一个时间步,该股票价格或者增加到当前价格的 倍,或者下降到当前价格的 倍。股票和期权价格的演化过程可通过如图8.3所示的二叉树表示出来,这种含有两个时间步长的二叉树称为两步二叉树(Two-step binomial trees)模型。我们的问题是根据这个二叉树对该欧式股票期权定价。 类似于一步二叉树模型的期权定价方法,采用无套利(no arbitrage)假设,由前向后(backward)逐步计算期权价值,我们得到                  (8.4) 其中,                                        (8.5)     在(8.4)中, 分别是风险中性状态下最后一个时间步股价到达上节点,中间节点和下节点的概率。因此,期权的初始价值可认为是期权在到期日的期望价值贴现。             例8.2 假设一只股票的初始价格是$50,且每过1年该股票价格或者上升20%,或者下降20%,无风险利率为5%,现有一个基于该股票,敲定价为$52且2年后到期的欧式看跌权,试用二叉树模型确定该期权的价值。 分析  将初始时间到期权到期日的2年时间分成相等的两个时间步,则股票和期权价格的演化进程可通过图4直观表示出来。依题意,已知: 且在期权到期日,当 时,该看跌权的价值为                       当 时,该看跌权的价值为                         当 时,该看跌权的价值为                      根据(8.5),可得                      再由(8.4),即可求得该看跌权的初始价值为            .               8.3   多步二叉树模型 一步和两步二叉树模型太简单了,实际使用的二叉树要求具有多个离散的时间步长来计算期权的价值。通常从初始时间到期权到期日需要分成30或更多个时间步长。 两步二叉树模型的欧式股票期权定价公式容易推广到多步二叉树模型的情形。如果我们将初始时间距期权到期日的时间T分成 个相等的时间步,则每个时间步长 。令股票的初始价格为 ,且每经过一个时间步,股价或向上增加到当前价格的 倍,或向下下降到当前价格的 倍,无风险利率为的 ,则在期权到期日,股票价格有 种可能结果: 它们在风险中性状态下出现的概率分别是: 其中                                        (8.6) 令 为与 种股票价格对应的期权价值, 为期权的敲定价,则在无套利假设下,股票看涨权在到期日的价值为            股票看跌权在到期日的价值为             将该期权在到期日的期望价值贴现,我们即可得到期权的(初始)价值为                         (8.7) 关于参数 的取值,Cox,Ross和Rubinstein给出了由股票价格波动率 确定的公式:                               (8.8) 8.4   二叉树模型的美式股票期权定价 上面我们讨论了应用二叉树模型给欧式股票期权定价。实际上,二叉树模型还可给美式股票期权定价。 美式和欧式股票期权在到期日的价值是相同的。不同的是,美式股票期权的定价过程要求在到期前每一个离散时间点上判断提早执行(early exercise)是否最优,并计算对应的期权价值。 假设股票价格经历了 个时间步的演化到达期权到期日,且每一个时间步长为 ,这可用一个 步二叉树描述(图形省略)。若股票的初始价格为 ,且每经过一个时间步,股价或向上增加到当前价格的 倍,或向下下降到当前价格的 倍,无风险利率为的 ,则在第 个时间步后,二叉树上产生 个节点,自上而下分别用 表示,则节点 对应的股票价格为期权价值用 表示。如果在节点 处期权没有被提早执行,则期权价值 可通过式(8.2)和(8.3)来计算,即                   (8.9)                                       (8.10) 如果在节点 处期权被提早执行是最优的,则期权价值 就是提早执行的收益(payoff),令 为期权的敲定价,对股票看涨权,有                                 (8.11) 对股票看跌权,有                                 (8.12) 显然,美式股票期权在节点 处的价值应该取 中的较大者,即                                      (8.13) 由于美式股票期权在期权到期日的价值是已知的,因此美式股票期权的定价应该由前向后逐步计算,这也称作向后推演(backwards induction)。先由第 步(期权到期日)的 个节点上的期权价值通过公式(8.9)~(8.13)推出第 步对应的 个节点上的期权价值,依此下去,我们可以得到初始时间上的期权价值。 下面通过一个例题具体介绍美式股票期权的二叉树定价过程。 例8.3 若例7.2考察的股票期权是美式的,试对该美式股票期权定价。 分析  股票价格的演化进程见图8.5。与欧式股票期权一样,在期权到期日,该美式看跌权的价值自上而下分别为                 (8.12),可得~根据式(8.9)                              故有                        (8.12),可得~再由式(8.9)                       美式看跌权的(初始)价值为                       .          
    展开阅读全文
    提示  咨信网温馨提示:
    1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
    2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
    3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
    4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
    5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
    6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

    开通VIP折扣优惠下载文档

    自信AI创作助手
    关于本文
    本文标题:二叉树定价模型.doc
    链接地址:https://www.zixin.com.cn/doc/3560169.html
    页脚通栏广告

    Copyright ©2010-2026   All Rights Reserved  宁波自信网络信息技术有限公司 版权所有   |  客服电话:0574-28810668    微信客服:咨信网客服    投诉电话:18658249818   

    违法和不良信息举报邮箱:help@zixin.com.cn    文档合作和网站合作邮箱:fuwu@zixin.com.cn    意见反馈和侵权处理邮箱:1219186828@qq.com   | 证照中心

    12321jubao.png12321网络举报中心 电话:010-12321  jubao.png中国互联网举报中心 电话:12377   gongan.png浙公网安备33021202000488号  icp.png浙ICP备2021020529号-1 浙B2-20240490   


    关注我们 :微信公众号  抖音  微博  LOFTER               

    自信网络  |  ZixinNetwork