导数基础知识专项练习.doc
《导数基础知识专项练习.doc》由会员分享,可在线阅读,更多相关《导数基础知识专项练习.doc(12页珍藏版)》请在咨信网上搜索。
1、导数专项练习一、选择题(本大题共21小题,共105.0分)1.函数f(x)=x3+x在点x=1处的切线方程为() A.4x-y+2=0B.4x-y-2=0C.4x+y+2=0D.4x+y-2=02.已知直线y=x+1与曲线y=ln(x+a)相切,则a的值为() A.1B.2C.-1D.-23.已知曲线y=2x2+1在点M处的瞬时变化率为-4,则点M的坐标是() A.(1,3)B.(1,4)C.(-1,3)D.(-1,-4)4.若函数y=f(x)的导函数y=f(x)的图象如图所示,则y=f(x)的图象可能() A.B.C.D.5.已知函数f(x)=-x3+ax2-x-1在(-,+)上是单调递减函
2、数,则实数a的取值范围是() A.(-,-,+)B.-C.(-,-)(,+)D.(-)6.已知函数f(x)=x在区间1,2上是增函数,则实数m的取值范围为() A.4m5B.2m4C.m2D.m47.设点P是曲线上的任意一点,点P处切线的倾斜角为,则角的取值范围是() A.B.0,),)C.D.8.函数y=f(x)导函数f(x)的图象如图所示,则下列说法正确的是() A.函数y=f(x)在(-,0)上单调递增 B.函数y=f(x)的递减区间为(3,5) C.函数y=f(x)在x=0处取得极大值 D.函数y=f(x)在x=5处取得极小值9.已知y=+(b+6)x+3在R上存在三个单调区间,则b的
3、取值范围是() A.b-2或b3B.-2b3C.-2b3D.b-2或b310.函数在R上不是单调增函数则b范围为() A.(-1,2)B.(-,-12,+) C.-1,2D.(-,-1)(2,+)11.已知函数f(x)的定义域为(a,b),导函数f(x)在(a,b)上的图象如图所示,则函数f(x)在(a,b)上的极大值点的个数为() A.1B.2C.3D.412.已知曲线C:y=x3-x2-4x+1直线l:x+y+2k-1=0,当x-3,3时,直线l恒在曲线C的上方,则实数k的取值范围是() A.k-B.C.D.13.曲线y=2lnx上的点到直线2x-y+3=0的最短距离为() A.B.2C.
4、3D.214.已知函数f(x)=x-alnx,当x1时,f(x)0恒成立,则实数a的取值范围是() A.(1,+)B.(-,1)C.(e,+)D.(-,e)二、填空题(本大题共4小题,共20.0分)22.函数f(x)的图象在x=2处的切线方程为2x+y-3=0,则f(2)+f(2)= _ 23.已知函数f(x)=x3-ax2+3ax+1在区间(-,+)内既有极大值,又有极小值,则实数a的取值范围是 _ 24.已知函数f(x)=ax3+x+1的图象在点(1,f(1)处的切线与直线x+4y=0垂直,则实数a= _ 25.曲线y=e-2x+1在点(0,2)处的切线与直线y=0和y=x围成的三角形的面
5、积为 _ 三、解答题(本大题共6小题,共72.0分)26.已知函数f(x)=x3+ax2+bx(a,bR)若函数f(x)在x=1处有极值-4 (1)求f(x)的单调递减区间; (2)求函数f(x)在-1,2上的最大值和最小值 27.已知函数f(x)=x2+lnx-ax (1)当a=3时,求f(x)的单调增区间; (2)若f(x)在(0,1)上是增函数,求a得取值范围 28.已知函数f(x)=-x3+x2+x+a,g(x)=2a-x3(xR,aR) (1)求函数f(x)的单调区间 (2)求函数f(x)的极值 (3)若任意x0,1,不等式g(x)f(x)恒成立,求a的取值范围 29.已知函数当x=
6、2时,函数f(x)取得极值 (I)求实数a的值; (II)若1x3时,方程f(x)+m=0有两个根,求实数m的取值范围 30.若函数f(x)=ax3-bx+4,当x=2时,函数f(x)有极值 (1)求函数的解析式; (2)求函数的极值; (3)若关于x的方程f(x)=k有三个零点,求实数k的取值范围 答案和解析【答案】 1.B2.B3.C4.C5.B6.D7.B8.D9.D10.D11.B12.B13.A14.D15.C16.D17.A18.A19.D20.D21.A22.-323.(-,0)(9,+) 24.125. 26.(1)f(x)=3x2+2ax+b,依题意有f(1)=0,f(1)=
7、-4, 即得(4分) 所以f(x)=3x2+4x-7=(3x+7)(x-1), 由f(x)0,得-x1, 所以函数f(x)的单调递减区间(-,1)(7分) (2)由(1)知f(x)=x3+2x2-7x,f(x)=3x2+4x+7=(3x+7)(x-1), 令f(x)=0,解得x1=-,x2=1 f(x),f(x)随x的变化情况如下表: 由上表知,函数f(x)在(-1,1)上单调递减,在(1,2)上单调递增 故可得f(x)min=f(1)=-4,f(x)max=f(-1)=8(13分) 27.解:(1)当a=3时,f(x)=x2+lnx-3x; f(x)=2x+-3,由f(x)0得,0x或x1,
8、 故所求f(x)的单调增区间为(0,),(1,+); (2)f(x)=2x+-a, f(x)在(0,1)上是增函数, 2x+-a0在(0,1)上恒成立,即a2x+恒成立, 2x+2(当且仅当x=时取等号) 所以a2, 当a=2时,易知f(x)在(0,1)上也是增函数, 所以a2 28.解:(1)f(x)=-x3+x2+x+a, f(x)=-3x2+2x+1, (2)由(1)可知, 当时,函数f(x)取得极小值,函数的极小值为 当x=1时,函数f(x)取得极大值,函数的极大值为f(1)=a+1, (3)若任意x0,1,不等式g(x)f(x)恒成立, 即对于任意x0,1,不等式ax2+x恒成立,
9、设h(x)=x2+x,x0,1, 则h(x)=2x+1, x0,1, h(x)=2x+10恒成立, h(x)=x2+x在区间0,1上单调递增, h(x)max=h(1)=2a2, a的取值范围是2,+) 29.解:(I)由, 则f(x)=x2+2ax+6因在x=2时,f(x)取到极值 所以f(2)=04+4a+6=0解得, (II)由(I)得 且1x3则f(x)=x2-5x+6=(x-2)(x-3) 由f(x)=0,解得x=2或x=3; f(x)0,解得x3或x2; f(x)0,解得2x3f(x)的递增区间为:(-,2)和(3,+); f(x)递减区间为:(2,3) 又 要f(x)+m=0有两
10、个根, 则f(x)=-m有两解,分别画出函数y=f(x)与y=-m的图象,如图所示 由图知,实数m的取值范围: 30.解:(1)f(x)=3ax2-b 由题意知, 解得, 所求的解析式为f(x)=x3-4x+4; (2)由(1)可得f(x)=x2-4=(x-2)(x+2) 令f(x)=0,得x=2或x=-2, 因此,当x=-2时,f(x)有极大值, 当x=2时,f(x)有极小值; (3)由(2)知,得到当x-2或x2时,f(x)为增函数;当-2x2时,f(x)为减函数, 函数f(x)=x3-4x+4的图象大致如图 由图可知: 31.解:(1)复数z是纯虚数,则由,得,即a=0 (2)若复数z是
11、实数,则a2-3a+2=0,得a=1或a=2 (3)在复平面内对应的点位于对应的点在第一象限, 则, 即,解得a0或a2 【解析】 1. 解:f(x)=x3+x f(x)=3x2+1容易求出切线的斜率为4当x=1时,f(x)=2利用点斜式,求出切线方程为4x-y-2=0故选B 首先求出函数f(x)在点x=1处的导数,也就是切线的斜率,再利用点斜式求出切线方程 本题比较简单,主要应用导数的几何意义,求出切线方程 2. 解:设切点P(x0,y0),则y0=x0+1,y0=ln(x0+a), 又 x0+a=1y0=0,x0=-1a=2 故选项为B 切点在切线上也在曲线上得到切点坐标满足两方程;又曲线
12、切点处的导数值是切线斜率得第三个方程 本题考查导数的几何意义,常利用它求曲线的切线 3. 解:y=2x2+1,y=4x, 令4x=-4,则x=-1,y=3点M的坐标是(-1,3) 故选C 求导函数,令其值为-4,即可求得结论 本题考查导数知识的运用,考查学生的计算能力,属于基础题 4. 解:由y=f(x)可得y=f(x)有两个零点,x1,x2,且0x1x2, 当xx1,或xx2时,f(x)0,即函数为减函数, 当x1xx2,时,f(x)0,函数为增函数, 即当x=x1,函数取得极小值,当x=x2,函数取得极大值, 故选:C 根据函数单调性和导数之间的关系判断函数的单调性即可 本题主要考查函数图
13、象的判断,结合函数单调性,极值和导数之间的关系是解决本题的关键 5. 解:f(x)=-x3+ax2-x-1, f(x)=-3x2+ax-1, 要使函数f(x)在(-,+)上是单调递减函数,则f(x)0恒成立, 即f(x)=-3x2+ax-10恒成立, =a2-4(-3)(-1)=a2-120, 解得, 即实数a的取值范围是 故选:B 求函数的导数,函数f(x)在(-,+)上是单调递减函数,则f(x)0恒成立,解不等式即可 本题主要考查导数的应用,要求熟练掌握导数与函数单调性,极值,最值之间的关系 6. 解:函数f(x)=x, 可得f(x)=x2-mx+4,函数f(x)=x在区间1,2上是增函数
14、, 可得x2-mx+40,在区间1,2上恒成立, 可得mx+,x+2=4,当且仅当x=2,时取等号、 可得m4 故选:D 求出导函数,利用函数的单调性,推出不等式,利用基本不等式求解函数的最值,推出结果即可 本题考查函数的导数的应用,考查最值的求法,基本不等式的应用,考查转化思想以及计算能力 7. 解:y=3x2-,tan-, 0,),), 故答案选 B 先求函数的导数的范围,即曲线斜率的取值范围,从而求出切线的倾斜角的范围 本题考查导数的几何意义,直线的倾斜角与斜率 8. 解:由函数y=f(x)导函数的图象可知: 当x-1及3x5时,f(x)0,f(x)单调递减; 当-1x3及x5时,f(x
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 导数 基础知识 专项 练习
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精***】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。