平面向量的数量积的性质.doc
《平面向量的数量积的性质.doc》由会员分享,可在线阅读,更多相关《平面向量的数量积的性质.doc(13页珍藏版)》请在咨信网上搜索。
1、 . 平面向量的数量积的性质【问题导思】已知两个非零向量a,b,为a与b的夹角.1.若ab0,则a与b有什么关系?【提示】ab0,a0,b0,cos 0,90,ab.2.aa等于什么?【提示】|a|a|cos 0|a|2.(1)如果e是单位向量,则aeea|a|cosa,e;(2)abab0;(3)aa|a|2即|a|;(4)cosa,b(|a|b|0);(5)|ab|a|b|.平面向量数量积的运算律(1)交换律:abba;(2)分配律:(ab)cacbc;(3)数乘向量结合律:对任意实数,(ab)(a)ba(b).向量的数量积运算(2013海淀高一检测)已知|a|5,|b|4,a与b的夹角为
2、120,(1)求ab;(2)求a在b方向上的射影的数量.【思路探究】利用数量积的定义及几何意义求解.【自主解答】(1)ab|a|b|cos 54cos 12054()10.(2)|a|cos 5cos 120,a在b方向上的射影的数量为.1.在书写数量积时,a与b之间用实心圆点“”连接,而不能用“”连接,更不能省略不写.2.求平面向量数量积的方法(1)若已知向量的模及其夹角,则直接利用公式ab|a|b|cos .(2)若已知一向量的模及另一向量在该向量上的射影的数量,可利用数量积的几何意义求ab.1.(2013玉溪高一检测)已知|a|6,|b|3,ab12,则a在b方向上的射影的数量是()A.
3、4B.4C.2D.2【解析】cos,向量a在向量b方向上的射影的数量为|a|cos64,故选A.【答案】A2.已知|a|6,e为单位向量,当向量a、e之间的夹角分别等于45,90,135时,分别求出ae及向量a在e方向上的正射影的数量.【解】当向量a和e之间的夹角分别等于45,90,135时,|a|e|cos 45613;|a|e|cos 906100;|a|e|cos 13561()3.当向量a和e之间的夹角分别等于45,90,135时,a在e方向上的正射影的数量分别为:|a|cos 6cos 453;|a|cos 6cos 900;|a|cos 6cos 1353.与向量模有关的问题已知向
4、量a与b的夹角为120,且|a|4,|b|2,求:(1)|ab|;(2)|(ab)(a2b)|.【思路探究】利用aaa2或|a|求解.【自主解答】由已知ab|a|b|cos 42cos 1204,a2|a|216,b2|b|24.(1)|ab|2(ab)2a22abb2162(4)412,|ab|2.(2)(ab)(a2b)a2ab2b216(4)2412,|(ab)(a2b)|12.1.此类求模问题一般转化为求模平方,与数量积联系.2.利用aaa2|a|2或|a|,可以实现实数运算与向量运算的相互转化.设e1、e2是夹角为45的两个单位向量,且ae12e2,b2e1e2,试求|ab|的值.【
5、解】ab(e12e2)(2e1e2)3(e1e2),|ab|3(e1e2)|3|e1e2|333.与向量夹角有关的问题(2014济南高一检测)若向量a,b,c两两所成的角均为120,且|a|1,|b|2,|c|3,求向量ab与向量ac的夹角的余弦值.【思路探究】先利用已知条件,分别求出(ab)(ac),|ab|和|ac|的大小,再根据向量的夹角公式求解.【自主解答】(ab)(ac)a2abacbc112cos 12013cos 12023cos 120,|ab|,|ac|,cos ,所以向量ab与ac的夹角的余弦值是.1.求向量a,b夹角的流程图求|a|,|b|计算ab计算cos 结合0180
6、,求解2.当题目中涉及向量较多时,可用整体思想代入求值,不必分别求值,以避免复杂的运算.(1)(2014辽宁师大附中高一检测)若向量a与b不共线,ab0,且cab,则a与c的夹角为()A.0 B. C. D.(2)(2014贵州省四校高一联考)若|a|2,|b|4且(ab)a,则a与b的夹角是()A. B. C. D.【解析】(1)acaaaaba2a20,又a0,c0,ac,a与c的夹角为,故选D.(2)因为(ab)a,所以(ab)aa2ab0,即aba24,所以cos,又因0,所以a与b的夹角是 ,故选A.【答案】(1)D(2)A混淆两向量夹角为钝角与两向量数量积为负之间关系致误设两向量e
7、1,e2满足:|e1|2,|e2|1,e1,e2的夹角为60.若向量2te17e2与向量e1te2的夹角为钝角,求实数t的取值范围.【错解】由已知得e1e2211,于是(2te17e2)(e1te2)2te(2t27)e1e27te2t215t7.因为2te17e2与e1te2的夹角为钝角,所以2t215t70,解得7t.【错因分析】当两向量反向共线时,其数量积为负,但夹角不是钝角而是平角.【防范措施】若两向量的夹角为钝角,则这两向量的数量积为负;反之不成立,因为两向量反向共线时,夹角为平角,即180,其数量积也为负.【正解】由已知得e1e2211,于是(2te17e2)(e1te2)2te(
8、2t27)e1e27te2t215t7.因为2te17e2与e1te2的夹角为钝角,所以2t215t70,解得7t.但是,当2te17e2与e1te2异向共线时,它们的夹角为180,也有2t215t70,这是不符合题意的.此时存在实数,使得2te17e2(e1te2),即2t且7t,解得t.故所求实数t的取值范围是7,.1.两向量a与b的数量积是一个实数,不是一个向量,其值可以为正(当a0,b0,090时),也可以为负(当a0,b0,90180时),还可以为0(当a0或b0或90时).2.数量积对结合律一般不成立,因为(ab)c|a|b|cosa,bc是一个与c共线的向量,而(ac)b|a|c
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 平面 向量 数量 性质
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精***】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。