虹膜识别特征提取与鉴别.doc
《虹膜识别特征提取与鉴别.doc》由会员分享,可在线阅读,更多相关《虹膜识别特征提取与鉴别.doc(68页珍藏版)》请在咨信网上搜索。
1、摘 要随着信息社会的快速发展,对安全的需求也日益增长。虹膜识别技术作为一种身份识别,以其很高的可靠性得到人们的重视。虹膜识别系统核心一般由图像采集、虹膜定位、归一化、特征提取及编码和训练识别五部分构成。本文介绍了目前虹膜识别的现状,简单阐述了一些经典的虹膜识别算法和技术,并完成识别系统。在虹膜的定位阶段,首先对图像进行缩放,在不影响后续处理的情况下减小了处理的数据量,然后采用梯度加权的Canny算法进行边缘检测,再对边缘图像,采用圆Hough定位方法,分别定位了虹膜的内外边界。接着采用Radon变换检测直线的方法分割上下眼睑,阈值法除去睫毛干扰。同时也研究了一些文献中分割眼睑和睫毛的方法。归一
2、化阶段,采用了文献中普遍使用的“Rubber-Sheet”模型,将虹膜归一化为大小的矩形,以利于特征比对。在虹膜的特征提取及编码阶段,基于信号处理中的空间/频域技术,采用一维Log Gabor滤波器提取虹膜的纹理信息,对滤波结果的实部和虚部分别进行相位量化和编码,同时也对噪声进行处理,获得相应的掩码。训练识别阶段,采用海明距离度量虹膜之间的相似度,选取最小距离分类器和具有最小错误率的分类阈值形成组合的分类决策规则。整个识别系统主要在中科院V3.0虹膜数据库上进行了测试。关键词:虹膜识别;虹膜定位;圆Hough变换;Log Gabor小波ABSTRACTWith the rapid growth
3、 of information technology, the demands of information security are ever-growing. As the technology of identification, iris recognition, for its high reliability, gets great attention. Iris recognition system consists of image capturing, iris location, iris normalization, feature extraction and codi
4、ng and decision training. In this dissertation, the situation of iris recognition is presented. Some practical algorithms and technique are briefly introduced. A system of iris recognition is fulfilled.In iris location stage, image is zoomed to reduce the data volume with less influence on post proc
5、essing. Afterword, the algorithm of Canny edge detection, with weighted gradient, is adopted. In the edge image, Circular Hough transform is applied to locate the inside and out boundary of iris. Then, linear Radon transform is put to use to detect the eyelids. Eyelashes are eliminated by threshold.
6、 In normalization stage, “rubber-sheet” model, in general use, is used t-o unwrap iris image into a rectangle of the same size, for the comparison of characteristics.In feature extraction and coding stage. 1D Log Gabor filters are used to filter the iris texture features in the space-frequency domai
7、n. Then, the real part and the image part is quantized by phase encoding respectively. Besides, the processing of noise to generates mask.In decision training stage, the Hamming distance is employed to measure the similarity of two iris. The minimum distance classifier combining with the threshold w
8、ith minimum error ratio are used as the decision rules. The experiments implemented on CASIA iris database V3.0 show that the system performs well.Key Words: Iris Recognition; Iris Location; Circular Hough Transform; Log Gabor Wavelets目 录第一章 绪论11.1 生物特征识别11.1.1 非生物特征身份鉴别方法11.1.2 生物特征识别技术的提出21.1.3 研究
9、生物特征识别技术的意义31.2 虹膜识别研究31.2.1 虹膜识别的机理31.2.2 虹膜识别的发展与现状61.2.3 虹膜库91.3 本文研究的内容9第二章 虹膜图像预处理112.1 虹膜内外边界的定位112.1.1 Canny算子和Hough变换的基本原理112.1.2 本文采用的Canny算子142.1.3 本文采用的Hough变换圆检测算法162.1.4 虹膜内外边界的定位172.2 眼睑的分割182.2.1 抛物线检测眼睑192.2.2 Radon变换法分割眼睑192.3 剔除睫毛212.3.1 阈值法剔除睫毛212.4 小结22第三章 虹膜图像归一化及特征提取233.1 虹膜纹理归
10、一化233.1.1 平移233.1.2 旋转243.1.3 伸缩243.1.4 分辨率243.2 虹膜的Rubber-Sheet模型253.2.1 虹膜边界表示263.2.2 虹膜区域的表示273.2.3 虹膜区域规范化283.2.4 灰度级插值293.2.5 具体实现313.3 小结31第四章 虹膜特征编码324.1 图像纹理分析的基本理论324.2 虹膜特征编码方案334.3 基于Log Gabor小波的特征编码354.3.1 Log Gabor函数性能分析354.3.2 Log Gabor小波的构造394.3.3 特征编码404.4 小结42第五章 虹膜模式匹配435.1 识别判决435
11、.2 虹膜模式匹配445.2.1 海明距离匹配445.2.2 最小距离分类器465.3 统计分析495.4 小结52第六章 总结536.1 论文内容总结与展望536.2 系统演示54参考文献61致 谢63第一章 绪论1.1 生物特征识别生物特征识别有时也被称为生物测定技术。生物特征识别是指利用人体所固有的生理特征或行为特征,进行个人身份识别的技术19,21,22。近年来在维护国家安全、航空安全、金融安全、社会安全、网络安全等应用领域,身份识别和认证变得越来越重要,对身份的有效认证要求更精确、更安全、更实用的鉴别方法,生物技术的发展和进步为身份鉴别提供了新的方法和手段,基于生物特征的身份识别方法
12、成了近年身份识别领域研究的热点。1.1.1 非生物特征身份鉴别方法个人身份鉴别可以分为:认证和识别。认证是指验证用户是否是他所声明的身份,识别指的是确定用户的身份。目前,身份鉴别大多采用身份证、钥匙、密码、用户名等等,通过验证这些标识身份的身外之物来识别个人身份,这些身份鉴别方法是把身份识别问题转化为鉴别一些标识个人身份的事物。这些均为“身外之物”,而不是生物特征,这类方法统称为非生物特征身份鉴别方法。这些身份鉴别方法确实在一定程度上提供了简单有效的身份鉴别,给人们的生活带来了方便,但是随着信息安全性和身份鉴别可靠性要求的提高,这些非生物特征的身份鉴别方法很难满足要求。采用钥匙、证件的门禁系统
13、和采用用户名和密码的网上交易,其安全性容易受到攻击。对于日益增加的计算机网络用户,登陆不同的网站,可能需要注册不同的用户名,相当多的用户为了便于记忆而设定的用户名和密码容易被猜出和破译,而非生物特征的身份鉴别方法很难识别真正的拥有者和取得身份标识物品的冒充者,所以一旦他人获得了这些身份标识事物,那么就拥有了相应的权利,造成的后果会很严重的。防伪性和防欺骗性差是非生物特征身份鉴别方法安全性低的另一个缺点。犯罪分子伪造证件的手段越来越高明,这使目前广泛使用的依靠证件、个人识别码、口令或钥匙等来确认个人身份的技术安全性降低。1.1.2 生物特征识别技术的提出二十一世纪是网络化、信息化时代,随之而来的
14、一大特征就是身份的数字化和隐性化,如何准确鉴别一个人的身份、保护信息的安全是当今信息化时代必须解决的问题。随着网络的日益普及,社会信息化程度越来越高,对安全、可靠的身份识别技术需求变得越来越迫切。人们希望有一种更安全、更可靠、携带使用更方便且不会被遗忘的事物来表示个人身份,显然个体本身的生物特征将是一种可行的、比较理想的选择。生物特征识别技术利用人类的生理或者行为特征进行身份识别和认证,认证的是人身内之物,而不是“身外之物”。人们可能会遗忘或丢失标识他们身份的证件物品或用户名及密码,但是人们绝不会遗忘或者丢失他们的生物特征(如人脸、指纹、虹膜、掌纹等),另外,个人的生物特征也不会被分享,所以生
15、物识别系统很难被欺骗或欺骗成本很高。目前,生物特征识别采用的生理特征主要有:指纹、掌纹、眼睛(视网膜和虹膜)、人体气味、脸型、皮肤毛孔、手腕/手的血管纹理和DNA等,是先天具有的,采用的行为特征主要包括:签名、声音、行走的步态、击打键盘的力度等,是后天习惯养成的。基于生物特征的识别利用计算机技术很容易实现身份自动识别,它们的基本工作原理相同,如图1-1所示。首先是从独立个体采集生物样本,这些样本可以是虹膜图像、指纹图像、人脸图像,声音的数字化描述,步态时序图像等;接着是进行预处理,主要进行特征区域定位或者去噪处理;然后进行特征提取,并将提取的特征与数据库存储的身份特征进行比对,最后输出比对结果
16、,做出身份判断。在基于生物特征的身份认证领域,身份信息全部是以数字形式存储于数据库或者智能IC卡中,鉴别身份时,能够对持有者合法性进行验证。图1-1 生物识别系统原理理想的生物特征识别系统应满足:(1)所有人都拥有这一生物特征,并且不同人的生物特征是可以区分的;(2)生物特征的采集不随采集的条件而不同;(3)系统能够区分冒充者。近年来,随着计算机技术和信息处理与识别技术的不断进步,生物识别技术得到了迅猛的发展,并逐渐被大众所认可。1.1.3 研究生物特征识别技术的意义利用人类个体生理和行为特征进行个人身份识别己经取得了许多可喜成果。目前,国外许多高新技术公司用眼睛虹膜、指纹、面貌特征等取代人们
17、手中的信用卡或密码,并且已经开始在机场、银行和各种电子器具上进行了实际应用。1.2 虹膜识别研究1.2.1 虹膜识别的机理1.虹膜结构虹膜识别是最具潜力的生物识别方法之一,是识别率高、非接触、仿欺骗性好的识别方法。虹膜是人眼受保护的内部组织,位于角膜和水样液后面、晶状体前面,如图1-2。虹膜是外部可见的,环绕瞳孔的有色圆环,是一个肌肉组织,虹膜直径约12mm,厚约0.5mm,根部最薄。虹膜表面高低不平坦,有皱缓和凹陷,凹陷又称隐窝。由于虹膜内血管分布不匀,使虹膜表面出现许多的放射形条纹。这其中包含的许多互相交错的类似于斑点、细丝、冠状、条纹、隐窝等的细微特征,就构成了我们所说的虹膜纹理信息,虹
18、膜识别就是利用虹膜组织上这些丰富的纹理信息,作为重要的身份识别特征。 图1-2 虹膜结构2.虹膜具有的优良特性虹膜模式具有作为身份特征的许多优良特性:(1)普遍性虹膜是每个人都具有的。(2)唯一性每个人错综复杂的虹膜是独一无二的,虹膜特征的唯一性与它的形成过程有关。虽然虹膜颜色由遗传决定,但是虹膜的纹理特征,就像指纹一样,是随机形成的。John Daugman博士和剑桥大学同事使用Gabor算法3,将人眼虹膜区域的纹理转换成二进制代码,在公共场所对虹膜识别系统作了大量的虹膜图像比较试验,超过两百万的眼睛图像分析,提供了安全系统的数学支持在伦敦的希思罗机场测试,结果表明眼睛可以提供个人身份信息,
19、而且虹膜识别几乎是零误差样本。 John Daugman估计,两幅虹膜图像得到的代码完全相同的几率几乎为零,没有形状完全相同的虹膜,即使是双胞胎或者同一个人的左、右眼得到的虹膜代码都是毫不相关的,这正是虹膜识别的引人之处。(3)稳定性发育生物学家通过大量观察发现,当虹膜发育完全以后,它在人的一生中是稳定不变的,因而具有稳定性。(4)非入侵检测和指纹识别不同,虹膜识别不需要物理接触,可采用非接触进行虹膜图像采集。(5)可接受程度较好虹膜识别以其认证准确度高、速度快、安全性高,被用户所接受。在识别过程中,用户不会有任何不舒服和不安的感觉,只需要在设备前停留片刻,无需为排长队等候而感到厌烦。3.虹膜
20、识别机理生物特征识别通过捕获模板样本,然后采用数学函数把样本转化成生物学模板,而且这模板应该能够提供标准化、有效的、高度有区别的特征表示,这样可以客观地和其它模板进行比较进而确定身份。虹膜识别系统的构成及其研究内容大致包括以下五个方面,如图1-3所示。(1)虹膜图像采集:虹膜图像采集直接影响到后续的特征提取和识别的效果。在大多数实际情况中,由于受到光照、噪音、饰物、遮挡等因素的干扰,采集到高质量、可接受的虹膜图像是一个比较困难的问题。(2)虹膜检测与定位:从各种虹膜图像(包括不同的光照、背景、大小、分辨率等)中检测出虹膜的存在,并确定其准确位置及有效区域的过程。(3)虹膜纹理归一化:已知虹膜内
21、外圆的半径以及圆心的坐标后,将虹膜纹理区域归一化为统一大小和分辨率,减少虹膜在图像中的位置、整体尺度、瞳孔缩放尺度对识别产生的影响。(4)特征提取与编码:目的在于提取虹膜纹理中可用于识别的有效信息,并构造虹膜纹理特征编码。(5)匹配与分类:将虹膜纹理特征编码与数据库中的虹膜纹理特征编码进行匹配,进行识别。图1-3 虹膜识别系统的构成1.2.2 虹膜识别的发展与现状用虹膜进行身份识别的设想最早出现于19世纪80年代,近20年,该项技术有了飞跃的发展。1885年在巴黎的监狱中曾利用虹膜的结构和颜色区分同一监狱中的不同犯人,这是最早利用虹膜进行的身份识别,真正的自动虹膜识别系统则是上世纪末才出现。1
22、987年,眼科专家Aran Safir和Leonard Florm首次提出了利用虹膜图像进行自动身份识别的概念。发育生物学家通过大量观察发现,当虹膜发育完全后,它在人的一生中是稳定不变的,因而具有稳定性,可用来作为身份特征。影响力较大的虹膜识别系统主要有Daugman系统、Wildes系统、Boles系统和中科院虹膜系统等3,1,6, 11,13,16。(1)Daugman系统目前国际上很多虹膜识别产品都使用了英国剑桥大学的Daugman博士提出的虹膜识别算法。算法中利用积分微分算子(Integro-differential operator)检测虹膜的内外圆边界:(1.1)其中代表虹膜图像在
23、处的灰度值:表示卷积;是标准差为的高斯算子,起平滑滤波的作用;是虹膜外边缘的参数(半径及圆心)。算子在以圆心,半径为的圆周上,对像素灰度值做积分并把它归一化,再求差分的极大值,从而得到圆的参数。然后,将虹膜区域视为各向同性的弹性体进行归一化,这就是“Rubber-Sheet”模型,其结果是将环形的虹膜纹理区域“均匀拉伸”到统一大小的矩形区域中。另外,Daugman设计了二维Gabor滤波器对虹膜纹理进行特征提取,滤波器表示如下:(1.2)滤波后提取相位信息,并将所得到的相位信息量化为二值的虹膜编码,共计2048比特。利用两幅虹膜图像所得到的二值编码间的归一化海明距离作为相似形度量对虹膜进行比对
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 虹膜 识别 特征 提取 鉴别
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。