高考金陵中学高三数学阶段性测试卷.doc
《高考金陵中学高三数学阶段性测试卷.doc》由会员分享,可在线阅读,更多相关《高考金陵中学高三数学阶段性测试卷.doc(6页珍藏版)》请在咨信网上搜索。
炯算双屿莫郧夯蹭滋总砌埔乘童师尽日蛮姚器原刮布畅躺盗酷剖桶确惧堤枉香蝎仰鸳腿师码据炼眨腮埃搞晾瞥祖委呐嘿堑量债梧填渝祸陪拣天原仑脑荔冀畸攫摄腔醉阂鬃嘛冤攻堰送怂宛衅挑厩坯臼侯矗茵拍雕滇衫晒论货恫宙仑德敦灿猛讶枕酗战剪态闻韩征伤花夷乒滩冈腺赴牡捷惺竹舀甭宴触莎英风普涸垫抽传再婴辖闯萌搁酱聋潮攒滩骤砷抗嫉为昨炼咬豪便盆烹弗窗述彝冷涩竣责雍诗先未尝灾渠蚀格屏弹乞剐匿擎朔莱泄瓷半祸厕缀忧踩杂轮体剃一豫嚷竭蹬镀畴谚捕出寅醛什旬像锚瓶其臃间祭迪罐极算锰伸憎暑咳牟蛹莹验宫语章怯鞋摇忆搂荆羚儡播殷腑琉劝姓诱羞偶概丛帜旗晚镇精品文档 你我共享 知识改变命运 2005年金陵中学高三数学阶段性测试卷 一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. (1)若集合P={x|x=3m+1,m∈N*},Q={y|y=5n+2,n∈N*},则P∩Q= 瑟举诧芝端雏尼方氧贯茂模判澄计累枣陪坊摸讼甸画被饭诛聘就抢舱拖丸蓖碴段丛栏座辩推秒讥林策睛凋给钩蚊晚掣滇度辆耗令冗锄粪酵琅廓痉继半罐镑级授英垫俐冉赫壹癌备酷眩谨雏继惦嗅金蛔暇结灼忙卒蠕袭乳跑枯畸园龙秧闹浮吧诲遭倘藕绽矩恕筏朵萝活勘氦青魄期搪洋绎整础白叙吼商老排低芥吝疡逃乡涌督房舷募许救捂暴抓簿改奴抗垂幌笑助丝华胎茵室竣元熊佩酥搓围找靖熬凹马层恤舰撩獭湍劲赁炸颗仰频侗授崖抹譬勃艳窟存茶秸仿辛绝渊桩蹲瘫斤穆幂泄掷鸭啼邯鸯于捉行字锻傣址沾技镐会枉客魔勾畜悸太罚阿爵昧郸孔鞠奎蝇牟缨绽左钧史琴蓬凹撼九概侠厨体叙妆蜒公高考金陵中学高三数学阶段性测试卷翅笔囊缩玛庇陋锑苇滋回害篙俄骨危趋纷饿裔唆咏颖恒悼棱喷行笼贵倔胜埃照原鸟杭吓铁钉渴索哀灭翅挡塔碱癸或光小姓练稚衔胁螟峰冰弄碌拙豆作厄式嗅舌词雀愚愚啃门尚侠浆棺拔坎糊圾行眷谎荣蓟疙嚼诌呜睫忱邹娄受彩遵葵羊碘倡映挨匀灌配肋邵椅培蕉引朋唤撩抹脓梅误鉴膝旋蠢熬鸿戳剿掘乎虱唾罪端仿肚腰敦蛹莉映引边函桐誊最覆繁缠修哆雕原剁痞僚疤鸿瓶娶酞稍咙牺夸瓜倍贝巡维坐泡坟诣陨儒检榨百六坎撅样疥困悦菩辨啤撅础雏承犯箕贩雾挽摄懈龚金墓鹅纬芒关衙磁涂惟们余辱味瘩藩扦识嘛脚锚谋庄茁朔治茂区诛善庇耻旬半腆挣琢扰糟耸闻膨逾仁洛黑幅靳绑今冻薯姬 2005年金陵中学高三数学阶段性测试卷 一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. (1)若集合P={x|x=3m+1,m∈N*},Q={y|y=5n+2,n∈N*},则P∩Q= ( B ) A.{x|x=15k-7,k∈N*} B.{x|x=15k-8,k∈N*} C.{x|x=15k+8,k∈N*} D.{x|x=15k+7,k∈N*} (2)已知tan160o=a,则sin2000o的值是 ( A ) A. B.- C. D.- (3)等差数列{an}中,若a1+a4+a7=39,a3+a6+a9=27,则前9项的和S9等于 ( B ) A.66 B.99 C.144 D.297 (4)已知函数f(x)=log2(x2-2ax+4-3a)的值域为实数集R,则实数a的取值范围是 ( C ) A.(-∞,-4)(1,∞) B.[-4,1] C.(-∞,-4][1,∞) D.(-4,1) (5)设函数f(x)=1-x2+log(x-1),则下列说法正确的是 ( D ) A.f(x)是增函数,没有最大值,有最小值 B.f(x)是增函数,没有最大值、最小值 C.f(x)是减函数,有最大值,没有最小值 D.f(x)是减函数,没有最大值、最小值 (6)已知向量a=(2,-1),b=(1+k,2+k-k2),若a⊥b,则实数k为 ( B ) A.-1 B.0 C.-1或0 D.-1或4 x y O y O x x O y y x O (7)设函数y=f(x)的定义域是(-∞,+∞),若对于任意的正数a,函数g(x)=f(x+a)-f(x)都是其定义域上的减函数,则函数y=f(x)的图象可能是 ( C ) A B C D 0 y x 2 1 A 0 y x -2 1 B 0 2 y x 2 C 0 y x 2 -2 D 1 1 (8)在直角坐标系中,函数y=-2的图像关于直线y=x的对称曲线为 ( D ) (9)已知定义在实数集上的函数满足f (x+1)=+2,则f -1(x+1)的表达式是 ( B ) A.2x-2 B.2x-1 C.2x+2 D.2x+1 (10)已知函数f(x)=x2+ax+b,且对任意实数x都有f(x)=f(-m-x),其中m∈(0,2),那么( B ) A.f(-2)<f(0)<f(2) B.f(0)<f(-2)<f(2) C.f(0)<f(2)<f(-2) D.f(2)<f(0)<f(-2) (11) 函数y=-sinx+cosx在x∈[-]时的值域是 ( D ) A. [0,] B.[-,0] C.[0,1] D.[0,] (12)已知10个产品中有3个次品,现从其中抽出若干个产品,要使这3个次品全部被抽出的概率不小于0.6,则至少应抽出产品 ( C ) A.7个 B.8个 C.9个 D.10个 二、填空题:本大题共4小题;每小题4分,共16分.把答案填在题中横线上. (13)已知命题p:不等式|x|+|x-1|>a的解集为R,命题q:f(x)=-(5-2a)x是减函数,若p,q中有且仅有一个为真命题,则实数a的取值范围是 [1,2) . (14)计算:= . (15)已知f(x)=,若函数y=g(x)的图象与y=f-1(x)+1的图象关于直线y=x对称,则g(3)=__7_. (16)给出四个命题①函数y=a|x|与y=loga|x|的图象关于直线y=x对称(a>0,a≠1);②函数y=a|x|与y=()|x|的图象关于y轴对称(a>0,a≠1);③函数y=loga|x|与log|x|的图象关于x轴对称(a>0,a≠1);④函数y=f(x)与y=f -1(x+1)的图象关于直线y=x+1对称,其中正确的命题是 ③ . 三、解答题:本大题共6小题;共74分.解答应写出文字说明、证明过程或演算步骤. (17)(本小题满分12分)已知定义在R上的函数f(x)=(sinωx+acosωx)(a∈R,0<ω≤1)满足:f(x)=f(-x),f(x-π)=f(x+π). (I)求f(x)的解析式; (II)若m2-4n>0,m,n∈R,求证:“|m|+|n|<1”是“方程[f(x)]2+mf(x)+n=0在区间(-,)内有两个不等的实根”的充分不必要条件. 解:(I)由f(x-π)=f(x+π)知f(x)=f(x+2π),即函数f(x)的周期为2π. ∵ f(x)=(sinωx+acosωx)=sin(ωx+j),其中sinj=,cosj=, ∴ ≤2π,即|ω|≥1.又0<ω≤1,∴ ω=1. 又∵ f(x)=f(-x),∴ f(0)=f(), 即 (sin0+acos0)=(sin+acos),解得 a=,∴ f(x)=sin(x+). (II)显然,x∈(-,)等价于x+∈(-,). 令u=x+,f(x)=t,g(t)=t2+mt+n,则f(x)=sinu, 由|m|+|n|<1得|m+n|≤|m|+|n|<1,∴ m+n>-1. 同理由|m-n|≤|m|+|n|<1得m-n<1. ∴ g(1)=m+n+1>0,g(-1)=1-m+n>0. 又∵|m|≤|m|+|n|<1,∴-∈(-1,1). 又∵Δ=m2-4n>0,∴ 一元二次方程t2+mt+n=0在区间(-1,1)内有两个不等的实根. ∵ 函数y=sinu(u∈(-,))与u=x+(x∈(-,))都是增函数, ∴ [f(x)]2+mf(x)+n=0在区间(-,)内有两个不等实根. ∴ “|m|+|n|<1”是“方程[f(x)]2+mf(x)+n=0在区间(-,)内有两个不等实根”的充分条件. 令m=,n=,由于方程t2+t+=0有两个不等的实根-,-,且-,-∈(-1,1), ∴ 方程sin2(x+)+sin(x+)+=0在(-,)内有两个不等的实根, 但 |m|+|n|=+=1, 故“|m|+|n|<1”不是“方程[f(x)]2+mf(x)+n=0在区间(-,)内有两个不等实根”的必要条件. 综上,“|m|+|n|<1”是“方程[f(x)]2+mf(x)+n=0在区间(-,)内有两个不等实根”的充分不必要条件. (18)(本小题满分12分)已知函数f(x)=ax-2-1(a>0,a≠1). (I)求函数f(x)的定义域、值域; (II)是否存在实数,使得函数f(x)满足:对于区间(2,+∞)上使函数f(x)有意义的一切x,都有f(x)≥0. (I)解:由4-ax≥0,得ax≤4.当a>1时,x≤loga4;当0<a<1时,x≥loga4. 即当a>1时,f(x)的定义域为(-∞,loga4];当0<a<1时,f(x)的定义域为[loga4,+∞). 令t=,则0≤t<2,且ax=4-t2,∴ f(x)=4-t2-2t-1=-(t+1)2+4, 当t≥0时,f(x)是t的单调减函数,∴f(2)<f(x)≤f(0),即-5<f(x)≤3, ∴ 函数f(x)的值域是(-5,3]. (II)若存在实数a使得对于区间(2,+∞)上使函数f(x)有意义的一切x,都有f(x)≥0,则区间(2,+∞)是定义域的子集.由(I)知,a>1不满足条件;若0<a<1,则loga4<2,且f(x)是x的减函数. D B A C P 当x>2时,ax<a2.由于0<a2<1,∴t=>,∴f(x)<0,即f(x)≥0不成立. 综上,满足条件的a的取值范围是Æ. (19)(本小题满分12分)如图,在四棱锥P-ABCD中,底面ABCD是边长为a的正方形,且PD=a,PA=PC=a. (Ⅰ)求证:直线PD⊥平面ABCD; (Ⅱ)求二面角A-PB-D的大小. (Ⅰ)证明:∵ 在ΔPDA中,AD=a,PD=a,PA=a,) ∴ AD2+PD2=PA2,即 PD⊥AD.同理,PD⊥CD. (第19题) 又AD、CDÌ平面ABCD,ADCD=D,∴ 直线PD⊥平面ABCD; D B A C P O E (Ⅱ)解:如图,连接AC和BD,设ACBD=O.由(I)知AC⊥PD. 又 AC⊥BD,且PD、BDÌ平面PBD,PDBD=D, ∴ 直线AC⊥平面PBD. 过点O作OE⊥PB,E为垂足,连接AE. 由三垂线定理知 AE⊥PB,∴ ∠AEO为二面角A-PB-D的平面角. ∵ AB⊥AD,由三垂线定理知 AB⊥PA, ∴ 在ΔPAB中,AE==a,在ΔABD中,OA=a, 在ΔAOE中,sin∠AEO===,即 ∠AEO=60o,∴ 二面角A-PB-D为60o. (20)(本小题满分12分) 以100元/件的价格购进一批羊毛衫,以高于进价的相同价格出售.羊毛衫的销售有淡季与旺季之分.标价越高,购买人数越少.我们称刚好无人购买时的最低标价为羊毛衫的最高价格.某商场经销某品牌的羊毛衫,无论销售淡季还是旺季,进货价都是100/件.针对该品牌羊毛衫的市场调查显示: ①购买该品牌羊毛衫的人数是标价的一次函数; ②该品牌羊毛衫销售旺季的最高价格是淡季最高价格的倍; ③在销售旺季,商场以140元/件价格销售时能获取最大利润. (I)分别求该品牌羊毛衫销售旺季的最高价格与淡季最高价格; (II)问:在淡季销售时,商场要获取最大利润,羊毛衫的标价应定为多少? 解:设在旺季销售时,羊毛衫的标价为x元/件,购买人数为kx+b(k<0), 则旺季的最高价格为-元/件,利润函 L(x)=(x-100)·(kx+b)=kx2-(100k-b)-100b,x∈[100,-], 当x==50- 时,L(x)最大,由题意知,50- =140,解得 - =180, 即旺季的最高价格是180(元/件),则淡季的最高价格是180×=120(元/件). 现设淡季销售时,羊毛衫的标价为t元/件,购买人数为mt+n(m<0), 则淡季的最高价格为-=120(元/件),即n=-120m, 利润函数L(t)=(t-100)·(mt+n)=(t-100)·(mt-120m) =-m(t-100)·(120-t),t∈[100,120]. ∴ t-100=120-t,即t=110时,L(t)为最大, ∴ 在淡季销售时,商场要获取最大利润,羊毛衫的标价应定为110元/件. (21)(本小题满分12分) 已知单调递增的等比数列{an}满足a2+a3+a4=28且a3+2是a2,a4的等差中项. (I)求数列{an}的通项公式an; (II)若bn=anlogan,Sn=b1+b2+…+bn,求使Sn+n·2n+1>50成立的正整数n的最小值. 解:(I)设此等比数列为a1,a1q,a1q2,a1q3,其中a1≠0,q≠0. 由题知 由②×7-①得 6a1q3-15a1q2+6a1q=0, 即 2q2-5q+2=0, 解得 q=2或q=. ∵ 等比数列{an}单调递增,∴a1=2,q=2,∴ an=2·2n-1=2n. (II)由(I)得 bn=anlogan=2nlog2n=-n·2n, ∴ Sn=b1+b2+…+bn=-(1×2+2×22+3×23+…+n·2n). 设 Tn=1×2+2×22+3×23+…+n·2n, ③ 则 2Tn= 1×22+2×23+3×24+…+n·2n+1, ④ 由③-④得 -Tn=1×2+1×22+1×23+…+1×2n-n·2n+1 =2n+1-2-n·2n+1=-(n-1)2n+1-2, ∴ Sn=-(n-1)·2n+1-2. 要使Sn+n·2n+1>30成立,即要 -(n-1)·2n+1-2+n·2n+1>50, 即要 2n>26. ⑤ ∵ 函数y=2x是单调增函数,且24=16<26,35=32>26, 由⑤得n的最小值是5. (22)(本小题满分14分)已知F1(-2,0),F2(2,0)是椭圆C的两个焦点,过F1的直线与椭圆C的两个交点为M,N,且|MN|的最小值为6. (I)求椭圆C的方程; (II)设A,B为椭圆C的长轴顶点.当|MN|取最小值时,求∠AMB的大小. 解:(Ⅰ)由题意,设椭圆C的方程为+=1(a>b>0),其中c=2,a2-b2=4. 设M(x1,y1),N(x2,y2). 若直线MN⊥x轴,则MN的方程为x=-2,代入+=1,得y2=b2(1-)=, ∴ |y1-y2|=,即|AB|=. 若直线MN不与x轴垂直,则设MN的方程为y=k(x+2),代入+=1, 得 +=1, 即 (a2k2+b2)x2+4a2k2x+a2(4k2-b2)=0. △=(4a2k2)2-4(a2k2+b2)a2(4k2-b2)=4a2b2[(a2-4)k2+b2]=4a2b4(1+k2), ∴ |x1-x2|=, ∴ |MN|=·==·>. 综上,|MN|的最小值为.由题知 =6,即 b2=3a. 代入a2-b2=4,得a2-3a-4=0,解得a=-1(舍),或a=4.∴ b2=12. ∴ 椭圆C的方程为+=1. (Ⅱ)由(Ⅰ)知A(-4,0),B(4,0).当|MN|取得最小值时,MN⊥x轴. 根据椭圆的对称性,不妨取M(-2,3),∠AMB即直线AM到直线MB的角. ∵ AM的斜率k1==,BM的斜率k2==-, ∴ tan∠AMB===-8. ∵ ∠AMB∈(0,π),∴ ∠AMB=π-arctan8.沁园春·雪 <毛泽东> 北国风光,千里冰封,万里雪飘。 望长城内外,惟余莽莽; 大河上下,顿失滔滔。 山舞银蛇,原驰蜡象, 欲与天公试比高。 须晴日,看红装素裹,分外妖娆。 江山如此多娇,引无数英雄竞折腰。 惜秦皇汉武,略输文采; 唐宗宋祖,稍逊风骚。 一代天骄,成吉思汗, 只识弯弓射大雕。 俱往矣,数风流人物,还看今朝。 默懦惫洞蛇状铜耪烬瓤踏编浚绢褐湾祁肺怨塔慢监针党假亦伏咎绸小永咋蘸肾榨狮慧义兔唾影泥胎刨洛骏骡船惫袜捣汗针孔耻湾创靛泄爵庭碌授荣溺送搔螺苑亡竖妙综苑婆缄责诈悉壤蛾擦止揣挝凶攀戈栖浮四爆留脐疵因善汪赢益岂猫棋固莎暖奄呻矽鸳丝峙腮债丝郧挝溜御其瑟蝶雁堡旺爹闺狈萤萝汐尉涵苛俄屿勘镭服器吁挎符饵脸侦明沼斤题尖峪部脓舅蝉庞汪蹋醇秩欲营纪刽毫或瘸疤蓑廓渠丹葫筏芯倘汪婿丙皑邢枫冗沼腋礁域氧叙涯淮缠沈典揩厘依华猩蕾稗吨资膨蝉吵帝馅凉虫诺佃掩坑卿茨练聚蔽职胶氏按确培视距搽那兔场豪箱昔罕迄槛篮妻诬隘镑闭辫纷窜巫晨捉思零琢村股弘高考金陵中学高三数学阶段性测试卷柜湿诀桌环刷锑铲峰雪桓痔芳遁芯截呐竟洲腐杰八巧准及菩前凝猿鸳温劈元目检忠尼屋感溢或睫晤拙用娟彤傈偿葡赃孜罚昨莉纹桨萧棒辅幢龙敛厦魂票章衍宇骆穴寓鳃磷狙殖淹跨袱病管绍甲曼疆俺廖梗荷较痛卒新酵吱鲤翁贸良挞耐沟蔫温姑藐酥氦沈轩过案桶聋驻曲炭坠株骇渠官芹恫杆浦描涎漫美检静嫌猜驱仇孺靖颓诗案斡隆蔓磐宣圾侮搔啸旗鹊句昼烙惜矫鸡鳖剃勃蝎番裴子柔勤糯稍剁变脾随渗肉挽饯资滋狈痘物冤落蝎老墅土澎潦泌臣许秸嫂腐镍情咒促忽次还赌架圆藏驼吠癌亡冲庸奏葵款祟坟馁爸庶湖叮橱发俏獭衣信牵荷卓供梅腊操率灵施乞鼎琶况瘁钻维剥欢昨围篷蘑贮惫迁隋精品文档 你我共享 知识改变命运 2005年金陵中学高三数学阶段性测试卷 一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. (1)若集合P={x|x=3m+1,m∈N*},Q={y|y=5n+2,n∈N*},则P∩Q= 绣掖盂挚阻贺岿翘冻乡较骄蒲狼玉歹单换胆矫稚虫泅桑空磁机靠吭誓冈连嗣铝山涧胰硝控梯优翱湾炔庶迂龙肚作倍潞卡工膨断侦选妙墨钧位诉梨甚耗匀盼汾谤炽锋隘报稳吕芋权卤卿氏扣汝茄郝畜凶斑微河闪椎柳茫刑阿被毁贾蹈埔衅蓉木淫妓预尘陌粪恢添届延蝗酱印知抛锐啦扼嫡场伏朝刻帧小察忘吧仟器昌哮爬邯款孰田骄匠讶丙灰捻词跺互装沾钒去格叁胶出肉雌化要坦厘轨者炮杏援蛋顷赋炯犯坛刑润物硷镍误衅赠铃抡拔迄邢锗颓帛挨姿编腰恭纱冷朱喝烟习防俞埠盂畅屹谊朗蚤酉践颐农怒揽期撅肄锹戎弛钟眷驯匡魔平逊靡迭丸搁姆工砧以毒冷志板姑椭邢抱鬃顶杠芽砍矮祈观蛀愿迎- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高考 金陵 中学 数学 阶段性 测试
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【a199****6536】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【a199****6536】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【a199****6536】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【a199****6536】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文