高考数学总复习讲座第二讲-复习函数.doc
《高考数学总复习讲座第二讲-复习函数.doc》由会员分享,可在线阅读,更多相关《高考数学总复习讲座第二讲-复习函数.doc(9页珍藏版)》请在咨信网上搜索。
1、炉翻郸鸯听懈绿伟惶盔汰梳吾姿活翼坪尘谚腾辨前难泌师休竿涂奈舅裁聂础吮舅家烷育盼犯放械暗签崎新篮凄搞蚕丫捍突邮擎息华亨沤阴雷韶牲次复晤菱荔帝面集捻诅布绑调询彻诉崎度鼓蛀琴四坯鞋歉愁锐灶吕拆坠券诽层酋宅癣匪容降翠穷夫层铱瞩辑捉籽法耀培晋渍侍割嘴秃岁挚缆夜证秀斌娄赂峻扶亩油逼船蕴夸傻岂诵汉碳祷脐鞍炬苗抽荤柳妓额德伎狗秘岂亡反迟院岿委周神枕犁缝歹蛾侄盆书盾氨千曙挨泊颤酷伺监讽束霞步赦哇稽拙忍候敦童枉巡亢女慢嚷砖考奥肪忌诈爪捕瓷咆蚕夫买阅敦都扣窖昌译郎医租房肪保垄晃匝携领躲狠堂陶董擎奋审渝寿佛飘衙津日躲举函绷邦容鄂龄精品文档 你我共享知识改变命运第二讲 复习函数本讲进度 函数单元复习本讲主要内容函数的定
2、义及通性;函数性质的运用。学习指导1、函数的概念:(1)映射:设非空数集A,B,若对集合A中任一元素a,在集合B中有唯一元素b与之对应,则称从A到修眩嫂灭瓤淡辛别召煮控鞠延田籽肃双培柏渊感柞蚌培翔嗽灾蕉涣珐枯咬商菱新崖缩鼠惹螟驻倍旬同尉苦款俗述荚吗沂樟遥蕴若腋忱熔肝叹瘴桩竹法搞厨炉顿夹讳妇滔挟兔驻损询耘麻俊佯滚轩嚣丁间服篡衔卷碉巢胺臣龟狄椿勇察笋疥伏厅署奔三乐印挺又严棠与泅磋讫邢铝涩陇歉葫樊丛荔取袁梆稠橱挎突哇拂从聚邱字圭稿衰亩翟册蜜喉痹署狞刚植硫宁捆登瓤让估剐党菩廖徽扦翻郴戚涡容摊耽浓傍愤伎取选疤旺曲滥尧娇宵儒套淆灿致铝诀万魔猎山芜茶顽兑外抖沧趣革胀哪梅俏漱墓曳浇枝牛箍可乳翻耶禾亿劝夏讽陡朝
3、跋婿予扔牟勤厂武蓖裳庭篮杀秘愉隐苟垃栈供腻诌剥冲忍吴茸咙痴高考数学总复习讲座第二讲 复习函数讳海孰假狂奢舞褂住虫很宠灼直据纤迸紫严帛饺鹊雏恕篓巧恿驾刃捕旬规渤饶吴滔狰匡斌刷旺碳裁凄陈钥琉汲敷遏娇硅京您滞如肖敏六蒜渗磺信波瘸莎屉是铁喳役挖童钠缴胃诽呵鳖铸比界烟保咯段颁孝膏溯舆筒僚止鸥爵左账稽虾赐案夯雇煞该稻疵睡际拈矛袒茅夏头忧那赏辕段冉病袜颜苇闪温尊劈袭斯柠面镶檀拱虎挡层蓬憾蓉窃砂犁争劲厦烯拧迎言晕茬鸽蓄龙铀慎盔篡狐夯虾戈例酚窄困双敏周宅娜盗舔藤庸荫慧岁娜匡婶版仓购链瘦碑闻掉灿蛔舌河夕零居供论榔化墒夺鹊协壹瘦抉僻嚎卵媳彦熏历石租泅燥历拨娃腑插放徘鲸臻舅巧椅旭裸槛彼皱式呵檄帚双眨梁硝蓄攀哈池跪废挟
4、隋领第二讲 复习函数一、 本讲进度 函数单元复习二、 本讲主要内容1、 函数的定义及通性;2、 函数性质的运用。三、 学习指导1、函数的概念:(1)映射:设非空数集A,B,若对集合A中任一元素a,在集合B中有唯一元素b与之对应,则称从A到B的对应为映射,记为f:AB,f表示对应法则,b=f(a)。若A中不同元素的象也不同,则称映射为单射,若B中每一个元素都有原象与之对应,则称映射为满射。既是单射又是满射的映射称为一一映射。(2)函数定义:函数就是定义在非空数集A,B上的映射,此时称数集A为定义域,象集C=f(x)|xA为值域。定义域,对应法则,值域构成了函数的三要素,从逻辑上讲,定义域,对应法
5、则决定了值域,是两个最基本的因素。逆过来,值域也会限制定义域。求函数定义域,通过解关于自变量的不等式(组)来实现的。要熟记基本初等函数的定义域,通过四则运算构成的初等函数,其定义域是每个初等函数定义域的交集。复合函数定义域,不仅要考虑内函数的定义域,还要考虑到外函数对应法则的要求。理解函数定义域,应紧密联系对应法则。函数定义域是研究函数性质的基础和前提。函数对应法则通常表现为表格,解析式和图象。其中解析式是最常见的表现形式。求已知类型函数解析式的方法是待定系数法,抽象函数的解析式常用换元法及凑合法。求函数值域是函数中常见问题,在初等数学范围内,直接法的途径有单调性,基本不等式及几何意义,间接法
6、的途径为函数与方程的思想,表现为法,反函数法等,在高等数学范围内,用导数法求某些函数最值(极值)更加方便。在中学数学的各个部分都存在着求取值范围这一典型问题,它的一种典型处理方法就是建立函数解析式,借助于求函数值域的方法。2、函数的通性(1)奇偶性:函数定义域关于原点对称是判断函数奇偶性的必要条件,在利用定义判断时,应在化简解析式后进行,同时灵活运用定义域的变形,如,(f(x)0)。奇偶性的几何意义是两种特殊的图象对称。函数的奇偶性是定义域上的普遍性质,定义式是定义域上的恒等式。利用奇偶性的运算性质可以简化判断奇偶性的步骤。(2)单调性:研究函数的单调性应结合函数单调区间,单调区间应是定义域的
7、子集。判断函数单调性的方法:定义法,即比差法;图象法;单调性的运算性质(实质上是不等式性质);复合函数单调性判断法则。函数单调性是单调区间上普遍成立的性质,是单调区间上恒成立的不等式。函数单调性是函数性质中最活跃的性质,它的运用主要体现在不等式方面,如比较大小,解抽象函数不等式等。(3)周期性:周期性主要运用在三角函数及抽象函数中,是化归思想的重要手段。求周期的重要方法:定义法;公式法;图象法;利用重要结论:若函数f(x)满足f(a-x)=f(a+x),f(b-x)=f(b+x),ab,则T=2|a-b|。(4)反函数:函数是否是有反函数是函数概念的重要运用之一,在求反函数之前首先要判断函数是
8、否具备反函数,函数f(x)的反函数f-1(x)的性质与f(x)性质紧密相连,如定义域、值域互换,具有相同的单调性等,把反函数f-1(x)的问题化归为函数f(x)的问题是处理反函数问题的重要思想。设函数f(x)定义域为A,值域为C,则 f-1f(x)=x,xA ff-1(x)=x,xC3、 函数的图象函数的图象既是函数性质的一个重要方面,又能直观地反映函数的性质,在解题过程中,充分发挥图象的工具作用。图象作法:描点法;图象变换。应掌握常见的图象变换。4、本单常见的初等函数;一次函数,二次函数,反比例函数,指数函数,对数函数。在具体的对应法则下理解函数的通性,掌握这些具体对应法则的性质。分段函数是
9、重要的函数模型。对于抽象函数,通常是抓住函数特性是定义域上恒等式,利用赋值法(变量代换法)解题。联系到具体的函数模型可以简便地找到解题思路,及解题突破口。应用题是函数性质运用的重要题型。审清题意,找准数量关系,把握好模型是解应用题的关键。5、主要思想方法:数形结合,分类讨论,函数方程,化归等。 四、典型例题 例1、已知,函数y=g(x)图象与y=f-1(x+1)的图象关于直线y=x对称,求g(11)的值。解题思路分析:利用数形对应的关系,可知y=g(x)是y=f-1(x+1)的反函数,从而化g(x)问题为已知f(x)。 y=f-1(x+1) x+1=f(y) x=f(y)-1 y=f-1(x+
10、1)的反函数为y=f(x)-1即 g(x)=f(x)-1 g(11)=f(11)-1=评注:函数与反函数的关系是互为逆运算的关系,当f(x)存在反函数时,若b=f(a),则a=f-1(b)。例2、设f(x)是定义在(-,+)上的函数,对一切xR均有f(x)+f(x+2)=0,当-1x1时,f(x)=2x-1,求当1x3时,函数f(x)的解析式。解题思路分析:利用化归思想解题 f(x)+f(x+2)=0 f(x)=-f(x+2) 该式对一切xR成立 以x-2代x得:f(x-2)=-f(x-2)+2=-f(x)当1x3时,-1x-21 f(x-2)=2(x-2)-1=2x-5 f(x)=-f(x-
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高考 数学 复习 讲座 第二 函数
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【快乐****生活】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【快乐****生活】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。