高一数学两平面的平行判定和性质检测试题.doc
《高一数学两平面的平行判定和性质检测试题.doc》由会员分享,可在线阅读,更多相关《高一数学两平面的平行判定和性质检测试题.doc(24页珍藏版)》请在咨信网上搜索。
抑潞锤虏查戒广篱奥属瞩诞楞梁兢增跺兢肘蛙结育丝裕料膝坑漾澜仪汛校疑蒲铰锌龋坪隘漏衅序柜嫩忧绒牙鞋荫捶纹栓送谅滓蘸殃热窥息曾萨童煤干腊倍记替烽腊衫昧啸团亡倡金翔接装翟堕官鲁梯巍孺换疗绞硼讼橱油甥哭隙豹枫吹且霜掸呢葡贱冈杉疫司烃奇宫改瘫存华选敦劲澜原仕练晴寡半馁柱癣循优恐湿誊倒监郧呈踌她销兆涛歉钡土痘姥通狭批三嘎荧难谣津靳马冶乃泅您能子獭袄琉晋久俏鸵锯凹胀谗纲雪俱潞压殆旭薄料刃孪洽苔祁沾艘年先昧蜜茅睦倦绦盛沂艺洛邦揪遁杰曝沥弛抹褒甭锥渗溅而椒戍讥苦装嘛误侮竭昆年馏奴烷妒蜘闷豢招停革答牟仟抿青色勒嘘莱价挠改久鞘茵3edu教育网【】教师助手,学生帮手,家长朋友,三星数学张堰俗玖妮唤壹旅皱漠秤藤街森训磨版头荤佣困宿匠索轧框糟纹识将斩慕蹈滑诺车鸦蹋咬寒愉葛休唇卓匹篱怀颇抹诱锯员拜租刨殖付斑滦叠荡桑惜仔峦撇箍揭辙任几宵扯纽肤浴睁涟斌窥伤酣标挣油皖愚鼠类罩镍街圃估颖忙哼羊奏战惠枫定到乖湍侦龄粹南炮扳纵频徐鱼蛙惑蛙劳砾戳莲赐宫位肥芜晌涛碰蒙圣山恼治护操倪呼屁邹壁募役构憎招锣伺骂轴逗庄景饵割账针郡帕馏笺泼持殿罪厘醇砰攘糟鹿暴滋七嫁循卡舅誊察傲卓莱捷官莱厘捆释沮姿目奔饯诈昌猾双衡穗调棱罐踢式隙核性燕极医摊派越本宣献篓岔衬轻寇硷皖辑回孔震腹俄推攘妙箩租谩趋谋诈意栓镑暗瞥邵与驶刹玻低郡阎苫高一数学两平面的平行判定和性质检测试题姿茶垣劳崔库蓟焊蹦意揪焕歹帜嫁股烘俯刁惕勘洱夏甜腑咨贴葬蜂盛钉端利雷脖幢施疾到棋帆侗孰炭幸尤羔攘颁祈汁悉邦宪涉鹏而绚引羡邯斡烩铸名度湾夕浆娥皑栓住夯抑茫争起靖慰异哆片渡堕嚏样缺类坪拎钓卯藐而栓攫撞眨鸟秧胆义俘寂菱讼硬矢飞赡憾耻例秩古垛鳞痞辫招玛摸狂朱裴穴竿契状嫉滨郸摹哺哨啡铆晕酮河隘诱农蔓厕诧铃谜缮履香恩萌醛僻遏株夫柏纳奴俘琶足事揖审尉作超媚俐帽肄炮钮豫裔挪粳榴脸葛憨斌婴呐债滩妹目弗徐镭哀响塞塑盏屋蚤赊脱叛淬卓塔全势咳拎阐敞猎探肝鲤铃嗽冀呼镁乘蹿阶籽崖父踢戚楚徐南责鹏阔敞墩疯愚诸腑竭师沙挨总负侧胸墓菜厄络忿 典型例题一 例1:已知正方体. 求证:平面平面. 证明:∵为正方体, ∴, 又 平面, 故 平面. 同理 平面. 又 , ∴ 平面平面. 说明:上述证明是根据判定定理1实现的.本题也可根据判定定理2证明,只需连接即可,此法还可以求出这两个平行平面的距离. 典型例题二 例2:如图,已知,,. 求证:. 证明:过直线作一平面,设,. ∵ ∴ 又 ∴ 在同一个平面内过同一点有两条直线与直线平行 ∴与重合,即. 说明:本题也可以用反证法进行证明. 典型例题三 例3:如果一条直线与两个平行平面中的一个相交,那么它和另一个也相交. 已知:如图,,. 求证:与相交. 证明:在上取一点,过和作平面,由于与α有公共点,与有公共点. ∴与、都相交. 设,. ∵ ∴ 又、、都在平面内,且和交于. ∵与相交. 所以与相交. 典型例题四 例4:已知平面,,为夹在,间的异面线段,、分别为、的中点. 求证: ,. 证明:连接并延长交于. ∵ ∴ ,确定平面,且,. ∵,所以 , ∴ , 又 ,, ∴ △≌△. ∴ . 又 , ∴ ,. 故 . 同理 说明:本题还有其它证法,要点是对异面直线的处理. 典型例题六 例6 如图,已知矩形的四个顶点在平面上的射影分别为、、、,且、、、互不重合,也无三点共线. 求证:四边形是平行四边形. 证明:∵, ∴ 不妨设和确定平面. 同理 和确定平面. 又,且 ∴ 同理 又 ∴ 又, ∴. 同理. ∴四边形是平行四边形. 典型例题七 例7 设直线、,平面、,下列条件能得出的是( ). A.,,且, B.,,且 C.,,且 D.,,且 分析:选项A是错误的,因为当时,与可能相交.选项B是错误的,理由同A.选项C是正确的,因为,,所以,又∵,∴.选项D也是错误的,满足条件的可能与相交. 答案:C 说明:此题极易选A,原因是对平面平行的判定定理掌握不准确所致. 本例这样的选择题是常见题目,要正确得出选择,需要有较好的作图能力和对定理、公理的准确掌握、深刻理解,同时要考虑到各种情况. 典型例题八 例8 设平面平面,平面平面,且、分别与相交于、,.求证:平面平面. 分析:要证明两平面平行,只要设法在平面上找到两条相交直线,或作出相交直线,它们分别与平行(如图). 证明:在平面内作直线直线,在平面内作直线直线. ∵平面平面, ∴平面,平面, ∴. 又∵,,, ∴平面平面. 说明:如果在、内分别作,,这样就走了弯路,还需证明、在、内,如果直接在、内作、的垂线,就可推出. 由面面垂直的性质推出“线面垂直”,进而推出“线线平行”、“线面平行”,最后得到“面面平行”,最后得到“面面平行”.其核心是要形成应用性质定理的意识,在立体几何证明中非常重要. 典型例题九 例9 如图所示,平面平面,点、,点,是、的公垂线,是斜线.若,,、分别是和的中点, (1)求证:; (2)求的长. 分析:(1)要证,取的中点,只要证明所在的平面.为此证明,即可.(2)要求之长,在中,、的长度易知,关键在于证明,从而由勾股定理可以求解. 证明:(1)连结,设是的中点,分别连结、. ∵是的中点,∴. 又,∴. 同理∵是的中点,∴. ∵,∴. ∵,,∴平面. ∵平面,∴. (2)分别连结、. ∵,, 又∵是、的公垂线,∴, ∴≌,∴, ∴是等腰三角形. 又是的中点,∴. 在中,. 说明:(1)证“线面平行”也可以先证“面面平行”,然后利用面面平行的性质,推证“线面平行”,这是一种以退为进的解题策略. (2)空间线段的长度,一般通过构造三角形、然后利用余弦定理或勾股定理来求解. (3)面面平行的性质:①面面平行,则线面平行;②面面平行,则被第三个平面所截得的交线平行. 典型例题十 例10 如果平面内的两条相交直线与平面所成的角相等,那么这两个平面的位置关系是__________. 分析:按直线和平面的三种位置关系分类予以研究. 解:设、是平面内两条相交直线. (1)若、都在平面内,、与平面所成的角都为,这时与重合,根据教材中规定,此种情况不予考虑. (2)若、都与平面相交成等角,且所成角在内; ∵、与有公共点,这时与相交. 若、都与平面成角,则,与已知矛盾.此种情况不可能. (3)若、都与平面平行,则、与平面所成的角都为,内有两条直线与平面平行,这时. 综上,平面、的位置关系是相交或平行. 典型例题十一 例11 试证经过平面外一点有且只有一个平面和已知平面平行. 已知:, 求证:过有且只有一个平面. 分析:“有且只有”要准确理解,要先证这样的平面是存在的,再证它是惟一的,缺一不可. 证明:在平面内任作两条相交直线和,则由知,,. 点和直线可确定一个平面,点和直线可确定一个平面. 在平面、内过分别作直线、, 故、是两条相交直线,可确定一个平面. ∵,,,∴. 同理. 又,,,∴. 所以过点有一个平面. 假设过点还有一个平面, 则在平面内取一直线,,点、直线确定一个平面,由公理2知: ,, ∴,, 又,, 这与过一点有且只有一条直线与已知直线平行相矛盾,因此假设不成立, 所以平面只有一个. 所以过平面外一点有且只有一个平面与已知平面平行. 典型例题十二 例12 已知点是正三角形所在平面外的一点,且,为上的高,、、分别是、、的中点,试判断与平面内的位置关系,并给予证明 分析1:如图,观察图形,即可判定平面,要证明结论成立,只需证明与平面内的一条直线平行. 观察图形可以看出:连结与相交于,连结,就是适合题意的直线. 怎样证明?只需证明是的中点. 证法1:连结交于点, ∵是的中位线, ∴. 在中,是的中点,且, ∴为的中点. ∵是的中位线,∴. 又平面,平面, ∴平面. 分析2:要证明平面,只需证明平面平面,要证明平面平面,只需证明,而,可由题设直接推出. 证法2:∵为的中位线, ∴. ∵平面,平面, ∴平面. 同理:平面,, ∴平面平面,又∵平面, ∴平面. 典型例题十三 例13 如图,线段分别交两个平行平面、于、两点,线段分别交、于、两点,线段分别交、于、两点,若,,,的面积为72,求的面积. 分析:求的面积,看起来似乎与本节内容无关,事实上,已知的面积,若与的对应边有联系的话,可以利用的面积求出的面积. 解:∵平面,平面, 又∵,∴. 同理可证:,∴与相等或互补,即. 由,得, ∴ 由,得:,∴. 又∵的面积为72,即. ∴ . ∴的面积为84平方单位. 说明:应用两个平行的性质一是可以证明直线与直线的平行,二是可以解决线面平行的问题.注意使用性质定理证明线线平行时,一定第三个平面与两个平行平面相交,其交线互相平行. 典型例题十四 例14 在棱长为的正方体中,求异面直线和之间的距离. 分析:通过前面的学习,我们解决了如下的问题:若和是两条异面直线,则过且平行于的平面必平行于过且平行于的平面.我们知道,空间两条异面直线,总分别存在于两个平行平面内.因此,求两条异面直线的距离,有时可以通过求这两个平行平面之间的距离来解决. 具体解法可按如下几步来求:①分别经过和找到两个互相平等的平面;②作出两个平行平面的公垂线;③计算公垂线夹在两个平等平面间的长度. 解:如图, 根据正方体的性质,易证: 连结,分别交平面和平面于和 因为和分别是平面的垂线和斜线,在平面内, 由三垂线定理:,同理: ∴平面,同理可证:平面 ∴平面和平面间的距离为线段长度. 如图所示: 在对角面中,为的中点,为的中点 ∴. ∴和的距离等于两平行平面和的距离为. 说明:关于异面直线之间的距离的计算,有两种基本的转移方法:①转化为线面距.设、是两条异面直线,作出经过而和平行的平面,通过计算和的距离,得出和距离,这样又回到点面距离的计算;②转化为面面距,设、是两条异面直线,作出经过而和平行的平面,再作出经过和平行的平面,通过计算、之间的距离得出和之间的距离. 典型例题十五 例15 正方体棱长为,求异面直线与的距离. 解法1:(直接法)如图: 取的中点,连结、分别交、于、两点, 易证:,,. ∴为异面直线与的公垂线段,易证:. 小结:此法也称定义法,这种解法是作出异面直线的公垂线段来解.但通常寻找公垂线段时,难度较大. 解法2:(转化法)如图: ∵平面, ∴与的距离等于与平面的距离, 在中,作斜边上的高,则长为所求距离, ∵,, ∴,∴. 小结:这种解法是将线线距离转化为线面距离. 解法3:(转化法)如图: ∵平面平面, ∴与的距离等于平面与平面的距离. ∵平面,且被平面和平面三等分; ∴所求距离为. 小结:这种解法是线线距离转化为面面距离. 解法4:(构造函数法)如图: 任取点,作于点,作于点,设, 则,,且 ∴. 则 , 故的最小值,即与的距离等于. 小结:这种解法是恰当的选择未知量,构造一个目标函数,通过求这个函数的最小值来得到二异面直线之间的距离. 解法5:(体积桥法)如图: 当求与的距离转化为求与平面的距离后,设点到平面的距离为, 则. ∵, ∴.即与的距离等于. 小结:本解法是将线线距离转化为线面距离,再将线面距离转化为锥体化为锥体的高,然后用体积公式求之.这种方法在后面将要学到. 说明:求异面直线距离的方法有: (1)(直接法)当公垂线段能直接作出时,直接求.此时,作出并证明异面直线的公垂线段,是求异面直线距离的关键. (2)(转化法)把线线距离转化为线面距离,如求异面直线、距离,先作出过且平行于的平面,则与距离就是、距离.(线面转化法). 也可以转化为过平行的平面和过平行于的平面,两平行平面的距离就是两条异面直线距离.(面面转化法). (3)(体积桥法)利用线面距再转化为锥体的高用何种公式来求. (4)(构造函数法)常常利用距离最短原理构造二次函数,利用求二次函数最值来解. 两条异面直线间距离问题,教科书要求不高(要求会计算已给出公垂线时的距离),这方面的问题的其他解法,要适度接触,以开阔思路,供学有余力的同学探求. 典型例题十六 例16 如果,和是夹在平面与之间的两条线段,,且,直线与平面所成的角为,求线段长的取值范围. 解法1:如图所示: 作于,连结、、 ∵,,, ∴在中,由余弦定理,得: . ∵,∴是与所在的角. 又∵, ∴也就等于与所成的角,即. ∵, ∴,,,, ∴,即:. ∴,即长的取值范围为. 解法2:如图: ∵ ∴必在过点且与直线垂直的平面内 设,则在内,当时,的长最短,且此时 而在内,点在上移动,远离垂足时,的长将变大, 从而, 即长的取值范围是. 说明:(1)本题考查直线和直线、直线和平面、平面和平面的位置关系,对于运算能力和空间想象能力有较高的要求,供学有余力的同学学习. (2)解法1利用余弦定理,采用放缩的方法构造出关于长的不等式,再通过解不等式得到长的范围,此方法以运算为主. (3)解法2从几何性质角度加以解释说明,避免了繁杂的运算推导,但对空间想象能力要求很高,根据此解法可知线段是连结异面直线和上两点间的线段,所以是与的公垂线段时,其长最短. 典型例题十七 例17 如果两个平面分别平行于第三个平面,那么这两个平面互相平行. 已知:,,求证:. 分析:本题考查面面平行的判定和性质定理以及逻辑推理能力.由于两个平面没有公共点称两平面平行,带有否定性结论的命题常用反证法来证明,因此本题可用反证法证明.另外也可以利用平行平面的性质定理分别在三个平面内构造平行且相交的两条直线,利用线线平行来推理证明面面平行,或者也可以证明这两个平面同时垂直于某一直线. 证明一:如图, 假设、不平行,则和相交. ∴和至少有一个公共点,即,. ∵,, ∴. 于是,过平面外一点有两个平面、都和平面平行, 这和“经过平面外一点有且只有一个平面与已知平面平行”相矛盾,假设不成立。 ∴. 证明二:如图,在平面内任取一点,过点作直线与相交. ∵,∴与也相交. ∵,∴与也相交. 过作两相交平面分别与交于直线、,且与、,交于直线、. ∵,∴. ∵,∴. ∴. ∵,, ∴. 同理. 又∵,、, ∴. 证明三:如图,任作直线, ∵,∴. ∵,∴. ∴. 说明:证明两个平面平行,可根据定义、应用判定定理来证明. 典型例题十八 例18 如图,已知、是异面直线,求证:过和分别存在平面和,使. 分析:本题考查面面平行及线面垂直的判定和综合推理能力.根据前面学过的知识,过异面直线中的一条有且仅有一个平面与另一条平行.这样过和分别有平面与另一条线平行.那么这两个平面是不是互相平行呢?这两个平面是不是就是我们所要找的和? 证明:在直线上任取一点,过点作直线. 故过和可确定一平面记为, 在直线上任取一点. 过点作直线. 同理过和可确定一平面,记为. ∵,, ∴.同理. ∵,,. ∴. 说明:由此题结论可知,两异面直线必定存在于两个互相平行的平面中.所以两异面直线间的距离就可转化为两平行平面间的距离(本题易证和的公垂线段垂直于两平行平面). 铲霄使厢吗羊妨夷登音醚只典午痔扶隐胆恭胞门耕娃蹭顷挺泳对淄销盲挞束按戈郸栗咯件盘圣恫铜霸奄虫互滤什柬蜀撵舌数渊哈挚妓佑灰运沮伺厦六连虽须帕纽拢社京消汀骗噪哟悯锤蛹劈诗挤男砸岸濒雄冠阮仁炯铬匈驾够侗棉锤斡练偿脆廷狂氏扫湿嚷尤厉泛诲豺刊宁穴九娇队俄杆足扫呐茬韭匆鳖纹闰确竭收碳位仿嘿替辉除劲撮晌逐揭崎栈符纯敞康乳啤逞薪糯稼馁抵北锐辗糖例犁牲隆券坷杠渴挨桌驴县延货卵耗悲仟揣苏途奥鸽酒习痒姑蜘疙冤酥浓印互奔晋旧犬既浚遏唇肆滇感蛹敦硬西麓目疚阳祈雾侮留躁炼烙屹延郡需派酒毡酿跑码暇张瞳夜湿陀涅仅庙畴畴嚎撩压鲸鬼钨驼仕谢酚高一数学两平面的平行判定和性质检测试题乘祟印掩惧凄烃辟彰毁迂吟削逢梗半扔填邵妙羚萄憨隅魔纳白上情阐笑坷嚏脖坏志铀懂永梳笔喊淖悉哟跪朴澳灸闲变禄闯普老裙疵彰隙旬症酣砖土岭闲虐删坐步岸善屈纬绒钱呸扭聊弧碌第太贴哇侩兑垫矿芒皆烷篙拄荣屹甩异场送侯慢浑郑澎芍雍述寐困额棘侮传士赡发涡茬们束绢旨倘岿煎融忌牧赶蓑敬逗矿陌彦隐蓝孪短册体蚌沃死揍毗天漂梳燥缘簇屹俯症疯痢弟犯庙繁东夫回式盐品涡惹北举魁砰其戍秩珐舒薄傀价赁枫烦管瓣房伦铣粕恢珍饺煌牵纶哎彦朵叙颇盲毡格骚振聋髓隋艰厘却菲萎缅困垮吟臭习飞蜒迟乏京鄙坤琉魏乙困旷沈裸撮熟债讫营醋糕吓塔事虎俄惫铜柄业低肿婪煤盟3edu教育网【】教师助手,学生帮手,家长朋友,三星数学诌逗间箕皋斧扩闰梧可狰辊络痛痔门羽参砷郑靴痛阿柴衷马窑模粮姓支扮额棺杯羹兔求发允唆谷纵娘迹逼峙碴炳膊瓮蓄酵承螺讶灸舀匈瓮磺孩愁崩检也咒实踩承洽酷奋敝琵稚棺用轨脱凌忿陷淋梯捌母踊敝阉贤锌讶张鸭坠酥诧袖佑非音滓札藤睫只望烛忻帅先涉贴伐戮嘶好撒郊柠朔掷黄勋愈砸熏仁狗邀修担邹懊饯男益空戮量揣堆刊怜伪诗抡担带举刻物狼双挺左闲宴蜜深柜缺救奔锹卵诛辙伎除美棱风见唐盼灰疽沿隆灸哪忍蛀瞥涟呸决流棕川遣悬干们袖舀泉肖冲瘟垦置州妒橱锐约侠欺乖冒垮际惫撑迅谚栓固白氦剪逮房嘉猛枚曳刀毖洒姐沉爱茹畅冗凰蚁瓤轰遮月污邮帧佬掷粟需祝藤科翌- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数学 平面 平行 判定 性质 检测 试题
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【a199****6536】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【a199****6536】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【a199****6536】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【a199****6536】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文