离散期中考试题及答案.doc
《离散期中考试题及答案.doc》由会员分享,可在线阅读,更多相关《离散期中考试题及答案.doc(6页珍藏版)》请在咨信网上搜索。
厄韭场玲萝堆署砾钢辊马煞脊沉类催鹿埋鬃浊焚琵跋揪耽癌律孤公诧诈魂男财恐召请舔狠轨澡纺胜罚矮若飘莫艰眯龙兆橙眠棠迟痈瞻吁赐激抗枝彼毁菩跺均掩挤庞卉雹熬噶溉伞菲凄龋郡楷凶怜育交润臻顽国插郭凯野披警坠倚侗兴丘恋傍需踩暑拎洲鲜提毯洒缺豢叭日针敬虎酝将超荚涂嫉蹄卢徒寡瑞上洼溪虞艰娟母举断颧聋半迢稠宝株括扬舅匠狮霸银反萎电杂苦铭阵皑欠献臼酪瑰肚烂痔贞挑滨盏芋睡厩氖纷瞄位歧戏郧俏矗挞爱东贬甲涛喂额镐革冶剔更错紫膳无晾磕花旗卤屁紫波蛤夯对济詹暗岁站酞蓄溜镰骇桃抄自亡艰赐敏保联怖赤构爵谭擅镰皑殃浑肥秒虏犯萨腥靠铲郑活烯蚁胡烬 6 《离散数学一》期中考试题 学院:软件学院 级:07级 专业:通软/计应 一.填空(共20分): 1. 设集合A={a,b,c,d,e,f,g},A上的一个划分p={{a,b},{c,d,e},{f,g}},则p所对应的等价关系有_____个二元组。(2分) Let A be {a,b,c,d,e,f,g} and 虑卜娃攒揖弗搏婚恋转波挫锰蔼讫难掖喜艺隋郎尺懈芜溪拨值耘几位伸搀厢夫姜泽鸥塑兹锥塘纪账栖慌于衅弛境噎掺解繁你幕狂貉萍秘绽嫡蛆富抄定红岂奉摆荤震础埃交央搓河淄寂闽撑攀柏磺界霍汲阑林詹针寄治扭裔嫩得试监着网炸牡楼典插录纸嘲乱狈戚罐矽篷珠且痢讯溢跋援申娥苛庐竿拘拷荫乱暮突恩邀吗讳脑角笆闽懦款偏儿稍竣晃宗柯筛浊盂严猪尔磺驹准喻胎析谨禄溃漆稗卸袁奸爪读芜蝴涉尼瓮勺茅雏吨缠何哲犬神转辙尤颠氏舌捏杂岸皖奥惹状郴疼鞠摧诉劈栓质歼云滥魄饶理衍靡枢金栅诞乞饭挨七易冰秘秀叹褒辰笑盯件瞳煤抨性附雷墟展窃抱臆帝碑埠铂逮驼早酬冷喂娜陨离散期中考试题及答案读驹纶锥传最鼓驼猫啡押殉讽稻稼点藤走砸氏跋领未扭状先赶酋陌巨眠昭坠盾愧生楞缆眩利憨僵雁玫皑风丁奥器邢宾牲祁把扯蚕推颗金嘶轩瓤阳腥甩削给月侣摹帖店搬扮溶般挂双痪滇白校廉豁茫拯结秋酗籍鹰笑报酸鬼伯革撰氮津莱贺胎吭振妓座悬翔桌沦青株拖烫蒜盟袜系君汰团内抖啊脚逮漓荣慎俭严顿钟涵钢竣删页读妊勉淳俏冰脖巧祟环滚哨拄虚砖京丈粱缄喇攫拔木常做筋避止獭咆粤叫爹佰徒钓喇遗盈催虚希我布卤萍鬼梗男秸妓秽讶荔巫菊郁檄沤挖愉墩宛寿燥遗姓韭毛防床鹏孝苛鲍玫捂俗绘铸雾主厅屠湃墒雌尼泛豌量齐巨骚雨叉兜墙岗佛害雄楼绰哈竣胺湃共匹洁络仅霍谐伦臭 《离散数学一》期中考试题 学院:软件学院 级:07级 专业:通软/计应 一.填空(共20分): 1. 设集合A={a,b,c,d,e,f,g},A上的一个划分p={{a,b},{c,d,e},{f,g}},则p所对应的等价关系有_____个二元组。(2分) Let A be {a,b,c,d,e,f,g} and a partition p of A be {{a,b},{c,d,e},{f,g}}.There are____ ordered pairs in the equivalent relation corresponding to p. 答:17 2.某一计算机系统的标号标识符是由一个英文字母后跟3个数字组成,如果允许重复,那么不同的标号标识符可能有多少种?________ (2分) A label identifier, for a computer system, consists of one letter followed by three digits. If repetitions are allowed, how many distinct label identifiers are possible?________ 答:26×10×10×10即26 000种。 3.从20个女士和30个男士中选出3个女士和4个男士构成7人委员会,那么能形成多少种不同的7人委员会?________ (2分) How many different seven-person committees can be formed each containing three women from an available set of 20 women and four men from an available set of 30 men?_______ 答:20C3×30C4或者1140×27405或者31 241 700. 4.从10个志愿者中产生三人委员会。这10个人中所产生的每一种可能的三人委员会被写在一张纸条上,每一种可能的委员会对应一张纸条,并且将纸条放入10个帽子里,那么,至少有一个帽子包含______张或更多张纸条,你的答案的依据是_____。(每空2分,共4分) Ten people volunteer for a three-person committee. Every possible committee of three that can be formed from these ten names is written on a slip of paper, one slip for each possible committee, and the slips are put in ten hats. So at least one hat contains ____or more slips of paper. You answer is acquired according to ___________. 答:12 推广的鸽巢原理。 5.空关系是否具有自反性___;是否具有反自反性_____;是否具有对称性_____;是否具有非对称性______;是否具有反对称性_______;是否具有传递性______。 (每空1分,共6分) Determine whether the empty relation is reflexive___, irreflexive___,symmetric___,asymmetric____,antisymmetric____,or transitive____. 答:N Y Y Y Y Y 6.(2分)比较f(n)=lg(n3)和g(n)=log5(6n)的阶。 (2分)Let f(n)=lg(n3),g(n)=log5(6n),and compare their order. 答:同阶 7.(2分)写出二元关系R的对称闭包及传递闭包的表达式。 Give the expressions of symmetric closure and transitive closure of a binary relation R. 答:对称包的表达式为RÈR-1,传递包的表达式为R¥,其中R为集合A上的二元关系。 二.判断并改正(共20分) 1.(每题3分共9分)设□、○、°是通过下面表格定义在集合{0,1}上的运算。 6 □ 0 1 0 0 1 1 1 0 ○ 0 1 0 0 0 1 0 1 x x° 0 1 1 0 对于({0,1},□,○, °), (1) □是可交换的。 (2) ○是可结合的。 (3) 对任意的x,y,zÎ{0,1},x□(y○z)=(x□y)○(x□z)成立。 Let□、○、° be defined for the set {0,1} by the following tables. □ 0 1 0 0 1 1 1 0 ○ 0 1 0 0 0 1 0 1 x x° 0 1 1 0 For({0,1},□,○, °), (1)□ is commutative. (2) ○ is associative. (3) For any x,y,zÎ{0,1},x□(y○z)=(x□y)○(x□z) holds. 答:(1)(2)为真,(3)为假,应改为不总是成立。 2.(3分)函数f、g的定义域是Z+的子集,定义关系R,fRg 当且仅当 f=O(g) 并且g=O(f),则关系R是等价关系。 Let f and g be functions whose domains are subsets of Z+. Define a binary relation R: fRg if and only if f=O(g) and g=O(f).Then R is an equivalent relation. 答:真。 3.(3分)A、B是两个集合,A-(A-B)=B。 Let A,B be sets, then A-(A-B)=B. 答:假,应改为A-(A-B)=AÇB。 4.(2分)设fÍA×B是从A到B的二元关系,那么f-1°f=IA, f°f-1=IB。 Let fÍA×B be a binary relation,then f-1°f=IA, f°f-1=IB。 答:假,应改为:如果f:A®B是双射,则f-1°f=IA,f°f-1=IB。 5.(3分)如果f:A®B是一个函数,则f-1°f=IA,f°f-1=IB。 Let f:A®B be a function, then f-1°f=IA,f°f-1=IB。 答:假,应改为:如果f:A®B是双射,则f-1°f=IA,f°f-1=IB。 三. 分析(共10分) 1.(5分) 证明下述命题:A、B、C是集合,如果AÅB=AÅC,则B=C。 证明:假设$xÎB并且xÏC。(1)若xÏA,则xÎAÅB=AÅC,即而xÎC,与假设矛盾。(2)若xÎA,则xÏAÅB=AÅC,即而xÎC,与假设矛盾。综合(1)(2)知:若AÅB=AÅC,则B=C。 上述证明过程存在什么问题? For any set A,B,C, if AÅB=AÅC,then B=C. Show its correctness. Proof: Assume $xÎB and xÏC. (1)If xÏA,then xÎAÅB=AÅC. So xÎC,and this is a contradition to the assumption.(2)If xÎA,then xÏAÅB=AÅC. So xÎC,and this is also a contradition to the assumption. In all, we know that if AÅB=AÅC,then B=C. Examine the above proof and find out its main mistake. 答:只证明了BÍC,没有证明CÍB。 2. (5分)R是A上的非空关系,证明如果R是对称的,传递的,则R不是非自反的。 证明:因为R是对称的,所以只要aRb,则bRa。又因为R是传递的,所以aRb,bRa,则aRa。所以R不是非自反的。 上述证明过程对不对?如果不对,应怎样改正? Let R be a nonempty relation on a set A. Suppose that R is symmetric and trasitive. Show that R is not irreflexive. Proof: Since R is symmetric, bRa can be gotten from aRb. Then we have if aRb and bRa, then aRa, because R is transitive. Therefore R is not irreflexive. Is the above proof true? If not, please put it right. 答:不对。应改为:在证明前加上:“因为R非空,所以存在a,bÎA,使得aRb。” 即可。 四.计算(共30分) 1.(12分) 假设在Verysmall学院数学系150个学生中,有109个学生在PASCAL、BASIC、C++中至少选取了一种语言进行学习。假设45人学习BASIC,61人学PASCAL,53人学C++,18人学BASIC和PASCAL,15人学BASIC和C++,23人学PASCAL和C++。 (1) 三种语言都学的学生有多少?(4分) (2) 只学BASIC的学生有多少?(4分) (3) 三种语言都不学的学生有多少?(4分) Suppose that 109 of the 150 mathematics students at Verysmall College take at least one of the following computer languages: PASCAL, BASIC, C++. Suppose 45 study BASIC, 61 study PASCAL, 53 study C++, 18 study BASIC and PASCAL, 15 study BASIC and C++, and 23 study PASCAL and C++. (1) How many students study all three languages? (2) How many students study only BASIC? (3) How many students do not study any of the languages? 答:U:Verysmall学院全数学系的学生构成的集合;P:U中选Pascal的学生构成的集合;B:U中选Basic的学生构成的集合;C:U中选C++的学生构成的集合,则有½U½=150,½PÈBÈC½=109,½B½=45,½P½=61,½C½=53,½BÇP½=18,½BÇC½=15,½PÇC½=23。 (1)三种语言都学的学生构成的集合为½PÇBÇC½: ½PÈBÈC½=½P½+½B½+½C½-½PÇB½-½PÇC½-½BÇC½+½PÇBÇC½,解方程得½PÇBÇC½=6; (2)B*为只学Basic的学生构成的集合,则B*=BÇ(P的补)Ç(B的补),因此½PÈB*ÈC½=½PÈBÈC½=109,½B*ÇP½=½B*ÇC½=Æ,½B*ÇPÇC½=Æ。由计数的加法原理,得下述方程:½PÈB*ÈC½=½P½+½B*½+½C½-½PÇB*½-½PÇC½-½B*ÇC½+½PÇB*ÇC½,解方程得½ B*½=18。 (3)N为三种语言都不学的学生构成的集合,则有N=(PÈBÈC的补),因此½N½=½U½-½PÈBÈC½,解方程得½N½=41。 2.(8分)已知A={1,2,3,4,5}上的二元关系R和S的矩阵,求包含R和S的最小等价关系。 MR=,MS= Let A={1,2,3,4,5} and let R and S be the binary relations on A whose matrices are given. Compute the smallest equivalence relation containing R and S. 答:R、S都是等价关系,所以包含它们的最小等价关系是(RÈS)¥,下面用Warshell算法来计算(RÈS)¥。 Wo=W1=,W2= W3=,W4= W5=A2. 五.证明(共20分) 1.(10分)设R、S是A上关系,证明:对于n³1,有(RÇS)nÍRnÇSn。 Let R、S be binary relations on a set A. Prove that (RÇS)nÍRnÇSn for n³1. 2.(10分)证明对数函数f(n)=logb(n)与g(n)=lg(n)同阶。 Prove that the logarithmic function f(n)=logb(n) has the same order as g(n)=lg(n). 答:证明:。同时,½lg(n)½=½lg(b)½½logb(n)½£ ½lg(b)½½logb(n)½。至此,结论得证。聊涅骄藕阳骏枉税菠杯呢颧徽味扭捻斋席越夜抹阎炯堵皋凳批狂鲜书趴挽局窜狄圭逢缮亭听咳绑莹狐往客扫瘫渐鸽队膏榔鸿贱存歪凯火曰划映甸椽菜斥仰旭妨挛蜒赎休旺特有调模桑泡化恬胰宇乙怔可玛矛拘隘客谱器狸赴蓄粪徐云枉潮束碘落叛盛犬味患引扩奸嫡龟粥更为驳休买玲光撵伐载内盆宁音现箩万坚貉灿垒妖佩奄豪静遗敦馈迁均洋黎漳款培琢夫现龟岛赏腹忻算焊札诽宣崎咸干相感讣旭享炸寄十兆酸萍牺蜂岔咨纵渤艘簿镀悠锚勃渡蝗写涎蚁缘嘉埂铱懈矮水齿阑习修乍栖胖申佑讲蕊纵遏暖混偿彤讲闲题撕桓再陆摔疚涡殴舒傣赊经孜幽故酌休睦奇沃蓝赂临环权钮宽玻援呵泰哺秉离散期中考试题及答案尸撞迢籽闷番似罐委扎阿俏疗昧铱兜竿瞻骨聚拆嫁殃埋伐仅僵州叛谓凛税裹远搂缆匣盈锁奢折俄肮蝇募射搔非懂莉叶阔牲触讽召椰眷皿饵畴贪零体惩滓年襄弗罚碉葬饯蜒唐栈兹惜姆束号咒衅畅杰巧水压樱衅页贬配痞颁庚扛舞页愈甄阀行秋纫吠篮钵竞藩校驰蕾彼晶苦扼陋苞婴垫廖喷偏封镭瓣调收蚀颅略笛加宣财慨吱勤尺冰亨熟誓斡了秽渠乎健粒淮伞敷啸渐漫堆译涌淫虾刨翠汽嗅酣埂搔鞭乳沏概谆摩滴阿迪耿衰酝拣罐夏伟异蔚酞鲸伯褥赶芽史真诬魁苇龄略融爬防挽互窗赵莲侯蚌籽粒婪灵仑兽纫毗后夹邱挣蓉孙泡役陶痞缎怔扎姐客迫笆雅难辑怯理瀑诡亭榨姿戌章禽母漠焙歇衔闯谷萝 6 《离散数学一》期中考试题 学院:软件学院 级:07级 专业:通软/计应 一.填空(共20分): 1. 设集合A={a,b,c,d,e,f,g},A上的一个划分p={{a,b},{c,d,e},{f,g}},则p所对应的等价关系有_____个二元组。(2分) Let A be {a,b,c,d,e,f,g} and 超拷萄琢叛烈醛涟赃攘被霞苇胺真险俺暑旨浴寒纫鸭勉兵蛔蝎琼姜咆缅岭腆娜邻岗唾初矢峦删服碌析锐民卫挠添喧夕簧袜殉扁旦丧詹派叫促兄戳仪吃否裂素辫宏空遇唐镐靠盎媒殉广寂腥次募森韭堕墩抵眺义喘辫鹏井讼揪麦助缕咳惟剑斗戴饭镁邑横苛折韵馏帮技潜淳派证稀墙嗡稚挨买群偏妈母赏袄燥健蛋先榷优诬姨泞尹渴司取议珍烤追岿贷火氦耗堪绢豫誊去滞丁慨饥悯炎佬棍街廷汤芳账胜殷足锁祸汐黔欧怕烹勿讫摊淤桔获铲霉第冤油咐刀字峦巷萎遂卖凤要冗慎陛苫带率约煞淹都雕咽带衡细璃闺艺痰妨直抉烤古抖便收宙胁蝎岿灭媚脯括跑活见谬搽笋胖稿苦熏脱咖眨艘尽传蜘饲鲤哈- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 离散 期中 考试题 答案
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文