老年人跌倒检测技术研究.doc
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 老年人 跌倒 检测 技术研究
- 资源描述:
-
老年人跌倒检测技术研究 Research on Fall Detection Technology for the Elderly 摘 要 跌倒重威胁着老年人的健康和生命,提供自由、实时的安全监护对老年人的生活质量和生命保证有重大的应用价值和研究意义,本文正是针对老年人对跌倒自动呼救的需求,围绕面向老人的便携式跌倒监护系统展开应用研究,基于跌倒的运动学原理,设计了跌倒检测算法。该跌倒检测算法通过对人体加速度和姿态的监测,构建了基于不同跌倒阶段的阈值判断的跌倒检测逻辑。通过系统实验验证,该跌倒检测算法对常见的跌倒情况的检测准确率在95%以上,可以满足老年人跌倒的危险情况检测需求。 关键词:老年人,穿戴式,跌倒检测,惯性传感器 1 绪论 1.1 研究背景 20世纪后,全世界正以无法想象的速度步入全球老龄化时代 [1]。我国也于20世纪末进入老龄化社会,预计到2050年将进入深度老龄化阶段,成为老龄化限度最严重的国家[2],这也将从多方面给我国社会带来巨大的压力和挑战。 在这种情况下,老年人的生活照料、出行等需求日益凸显,其中体现在安全保健问题尤为突出,重要体现在两点:第一,老年人身体机能退化,他们极易意外或因病(特别是心脑血管疾病)跌倒。据国外记录,约有1/3的65岁老人每年至少跌倒一次[3],跌倒在老年人死亡因素中的比例高达25% [4],跌倒非常容易导致老人骨折、内脏震荡;假如跌倒后得不到及时救助,会进一步提高致死率和致残率。跌倒不仅给老年人导致生理上的伤害,还会带来心理上的阴影。此外,当前社会老年人跌倒后无人敢搀扶、无人敢救,渐渐成为一种普遍的社会现象,在这种情况下,跌倒对老年人更是致命的。 如何在信任危机日益严重的社会维护老年人的生命健康权利,成为日渐重要的议题。因此针对老年人对安全保证的迫切需求,运用电子信息技术解决此问题有着极大的社会价值。 1.2 研究现状 目前,跌倒检测算法研究的着眼点涉及三点:第一是重点分析临界阶段或冲击,第二是重点分析跌倒后阶段,最后是两者同时分析。 1) 跌倒的临界阶段的研究 Wu等人(University of Vermont, USA)通过视频分析人体在跌倒时特定点的运动发现,这些点在跌倒临界阶段的速度为其他故意识行为的3倍[5]。 Charif等人尝试通过计算机视觉系统追踪头部的运动,并通过粒子滤波和固定水平和速度阈值方法检测跌倒[6]。 Noury等人(University of Grenoblein France)设计了一种佩带在腋下的自主检测装置,涉及加速度计、一个倾角计和一个振动传感器。检测算法特性为速度阈值、从直立到水平的体位和跌倒后的静息状态[7]。 Mathie等人使用位于胸部的三轴加速度传感器,Hwang等人使用陀螺仪,Bourke和Lyons等人使用双轴陀螺构建阈值算法,在临界阶段检测跌倒[8-10]。 Tamura等人提出在跌倒初期检测成功后,可以释放安全气囊保护跌倒者,但是该系统只能保护向后跌倒的情况[11]。 2) 跌倒的冲击的研究 Williams等人在1998年初次描述了佩戴在腰部的跌倒检测装置,重要原理为通过压电传感器检测冲击,然后激发水银倾角计检测体位[12]。Doughty et al.继续研究了这种方法并由Tunstall (Whitley lodge, Yorkshire, England)公司推向市场[13]。 Lindemann等人将三轴加速度传感器放入助听器中,通过3个阈值检测跌倒过程中的冲击:xy平面内的总加速度为2g;竖直方向的最大速度为0.7m/s;所有方向的总加速度为6g[14]。 3) 跌倒后阶段的研究 在跌倒后阶段,人体一般处在平行于地面且静息状态。因此可以通过倾角计测量人体姿态或通过位于鞋底的压力传感器检测跌倒。但是跌倒后阶段的状态和被测者平时卧床休息的状态容易混淆,因此以上的检测方法一般需要和其他阶段的检测方法结合使用。 综上所述,跌倒是行走过程中常见的危险事件,目前跌倒检测的研究前沿为跌倒检测准确率为90%左右。 1.3 目前该领域存在的问题 (1) 跌倒检测的准确率和实用性尚有待提高。 目前大多数跌倒检测研究的实用性不强,检测准确率在90%左右,对于危害严重的跌倒事件来说,还局限性以完全监护使用者的行走安全。因此,跌倒检测系统的检测准确性和尚有一定的提高空间。 (2) 跌倒检测算法复杂难以产品化 由于大部分跌倒检测算法复杂,时效性差,很难工程化,目前市场上也没有相关的老年人监护产品,将算法做到简朴实用,便于工程化也是本课题的难点。 1.4 研究思绪 本文一方面通过度析跌倒运动的定义及运动学原理,通过对跌倒进行建模,提取特性模式,进而通过样机平台搭建为算法研究提供硬件支持,最后通过系统实验验证算法的有效性和实用性。 2 跌倒运动学机理 2.1 跌倒的定义与因素 “无意识的倒向地面,或者其他一些未能导致强烈冲击的情况,如失去意识、中风、癫痫发作”。这个跌倒的定义仍被许多研究机构沿用至今,扩展后还包含了晕厥和心血管疾病所导致的跌倒 [15]。 (1) 跌倒时间段的划分 跌倒重要分为四个阶段:跌倒前阶段、临界阶段、跌倒后阶段和恢复阶段(图1)。跌倒前阶段与平常行为相同;临界阶段以人体倒向地面为起始,以人体承受剧烈冲击为结束,这个阶段大约连续0.3-0.5s;跌倒后阶段以人体承受剧烈冲击为起点,该阶段人体处在不活动状态。恢复阶段是跌倒者自行站立或在别人帮助下恢复站立[16]。 图1 跌倒的阶段划分 关于跌倒的定义,尽管缺少统一的标准,但是近来研究人员广泛采用是:“人体故意识或是无意识的倒向并躺在地面或是其较低水平面的事件[17]。” 跌倒的因素是多种因素互相结合的。重要涉及生理因素、疾病因素、药物因素、境因素、性别及社会心理因素等[18-21]。 2.2 跌倒的运动学描述 (1) 身体重心的变化 由跌倒的定义可知,跌倒事件是人体从一个较高平面倒向另一个较低平面的过程,从而必然随着着人体重心的位置变化(一般情况是重心的减少)。如图2示,以向前跌倒为例,人体重心(图中蓝色圆点)随时间呈现出逐渐减低的过程。在抱负情况下,跌倒的运动轨迹(重心高度的时间变化轨迹)应当呈现为抛物线形状,其运动学方程为: (2.1) 其中,h0为人体重心的初始高度,单位为m;g为重力加速度,单位为m/s2;t为时间,单位为s,初始时刻(t=0)为跌倒开始时刻。 t h 图2 跌倒时重心变化的运动学特性 在实际应用中,采用加速度积分的方法描述人体重心变化通常存在较大累积误差,因此,一般结合其他传感量进行修正,譬如检测高度的气压计等。 (2) 身体姿态的变化 在跌倒过程中另一个运动学特点是人体姿态的变化。按照跌倒时的姿态分类,跌倒可以分为向前跌倒、向后跌倒和侧向跌倒。以人体面向X轴正方向为例,向前跌倒可以等效为人体绕Y轴逆时针旋转,向后跌倒可以等效为人体绕Y轴顺时针旋转,同理,侧向跌倒可以等效为人体绕X轴的旋转。 因此,若将人体跌倒简化为刚体的运动,则其姿态的变化可以用欧拉角来表达。如图3所示,设定xyz轴(蓝色)为地理坐标系的参考轴,XYZ轴(红色)为捷联在人体上的载体坐标系的坐标轴,则人体的运动可以用欧拉角表达。 但是采用欧拉法拟定姿态角的方法有一定的局限性,由于微分方程中存在三角函数,实时计算比较困难,并且当θ为90°时,方程出现奇异点,姿态角无法解算。 3 跌倒检测监护装置硬件设计 跌倒检测监护装置系统分为跌倒检测终端和监护中心两部分。跌倒检测终端由电源模块、解决器模块、传感器模块、无线通信模块、人机交互模块构成,分别用于终端供电、运营跌倒检测算法、物理惯性信息的检测、跌倒检测算法的执行、报警信息的发布和取消以及信息的无线传输。监控中心分为则涉及网管和PC,分别用于网络的管理和信息的储存和后解决。如图4所示。 图4 跌倒检测监护装置硬件原理 1)解决器模块 该部分重要有AVR单片机ATmega8L最小系统构成,涉及电源、晶振、复位和下载电路,其原理图如图5。 图5 解决器模块电路图 2)惯性传感器模块 该部分由三轴加速度传感器MMA7260及其外部RC滤波电路构成,其原理图如图6: 图6 惯性传感器模块电路图 MMA7260是飞思卡尔公司生产的性价比最高的微型电容式加速度传感器,其采用了信号调理、单级低通滤波器和温度补偿技术。可用三轴加速度计运用重力分量换算原理,来测量角度,与其他数字量倾角传感器相比自然要精确许多,由于模拟量的,可将电压值换算相应倾斜角度值。并且可通过G1\G2管脚调整加速度的量程,合用于检测人体的加速度。 3)无线通信模块 该部分重要由CC2430 (Zigbee SoC)构成,采用ACX公司的AT7020芯片天线,以达成节省体积的目的。其原理图如图7: 图7 无线模块电路图 4)电源模块 该部分重要有锂电池、低压差调节器(LPO)和电量计组成,锂电池采用3.7V可充电电池,电池端具有保护电路;低压差调节器采用TPS79633芯片,将3.7V调节到3.3V;电量计采用BQ27510芯片,检测锂电池的电量和预测剩余使用时间。此外,需要注意的是,加速度传感器的电源应当与其他电源隔离,以减少噪声干扰。该部分原理图如图8: 图8 电源模块 5)人机交互模块 该部分重要由各种外设涉及按键开关、电源接口、LED指示灯和蜂鸣器等构成,其原理图如图9所示: 图9 人机交互模块 4 跌倒检测算法设计 跌倒检测的目的是可以将跌倒(Fall)与平常生活的正常动作(Activities of Daily Life,ADL)区分开来,准确地检测跌倒的发生,并智能判断(并执行)是否需要报警求助。从而尽也许地缩短救助时闻,减小跌倒带来的伤害(特别是长时间晕厥),减少误报率,最终提高被监测者的生活质量。 4.1 跌倒运动学模式分析 4.1.1 跌倒与平常行为分类 无论是跌倒还是平常行为,假如以分解动作来看都是不同静态姿势之间的转化,当然转化过程中的剧烈限度和时间点也是不同跌倒和平常行为的重要区别。人体的常见静态姿势涉及:左/右侧躺、仰卧、俯卧、站立、坐、蹲等。在这些静态姿势之间的转化就形成了人体的运动。 常见的跌倒重要分为3种: 1) 向前跌倒,即从站立到俯卧的剧烈过程; 2) 向后跌倒,即从站立到仰卧的剧烈过程; 3) 侧向跌倒,涉及向左/右跌倒,即从站立到侧卧的剧烈过程。 据O’Neil等人的研究表白,前向跌倒是最为常见的跌倒,约占整个跌倒事件的60%左右[22]。当然实际生活中,还也许出现更加复杂的跌倒情况,这些跌倒模式较为复杂且很少发生,将作为下一步研究的对象,不在本文的讨论范围内。 为简化研究,6种容易和跌倒事件混淆的平常行为被作为重要研究对象,其涉及: 1) 走; 2) 跑; 3) 跳; 4) 上下楼; 5) 坐下; 6) 躺下。 本研究中的跌倒检测即是探讨常见的3种跌倒事件与易混淆的6种平常行为的重要区别和辨认方式。由于其重要区别包含两个方面:其一是运动所相应的静态姿势不同,相应的惯性量即是姿态的变化;其二是在不同静态姿势间转换的剧烈限度不同,相应的惯性量即是加速度的变化。下面分别从这两个方面讨论跌倒和平常行为的运动模式。 4.1.2 加速度分析 (1) 数据预解决 加速度的时域信号体现了人体运动过程中剧烈限度,以及在不同时刻剧烈限度的分布。然而在实际信号采集过程中,原始数据往往包含了有效信号和各种干扰信号: 1) 人体运动加速度; 2) 重力加速度; 3) 人体抖动; 4) 测量噪声; 5) 惯性传感器与身体的相对运动 其中,人体运动加速度和重力加速度是有效信号,这两者可以体现人体的运动状态,而后三个信号属于干扰信号,应当予以克制和去除。由于这三种干扰信号都与脉冲噪声相似,因此选用中值滤波的方法对加速度信号进行预解决,其解决效果如图10所示。 图10 中值滤波解决加速度信号 (2) 总加速度强度(Acceleration Vector Magnitude) 总加速度即为三轴加速度的矢量和,它能比较直观的体现人体运动的剧烈限度,其数学表达为: (5.1) 常见的6种平常行为的总加速度强度(AVM)与竖直轴加速度(Ax)如图11所示,其中总加速度(AVM)以黑色曲线表达,竖直轴加速度(Ax)以蓝色曲线表达。分析平常行为的加速度曲线可得以下特性; 1) 总加速度(AVM)的幅值以1g为中值摆动,由于重力加速度的存在。 2) 竖直轴加速度(Ax)的幅值以-1g为中值摆动,由于X轴正方向与重力方向相反。 3) 坐下起立、走、躺下和上楼的总加速度(AVM)变化幅值在2g之内,说明运动剧烈限度较小。 4) 跑和跳的总加速度(AVM)变化幅值在4g之内,说明运动剧烈限度较大。 5) 在人体保持直立状态的平常行为中(除躺下外的其他5种),总加速度(AVM)与竖直加速度(Ax)的变化趋势基本一致。 6) 躺下时,由于人体从直立状态转化到平躺状态,因此竖直加速度(Ax)曲线存在明显“阶跃”变化。 图11 常见平常行为的总加速度(黑色)与竖直轴加速度曲线(蓝色) 常见的3种跌倒事件的总加速度强度(AVM)与竖直轴加速度(Ax)如图12所示,其中总加速度(AVM)以黑色曲线表达,竖直轴加速度(Ax)以蓝色曲线表达。分析这3种跌倒事件的加速度曲线可得以下特性: 1) 不同方向的跌倒事件加速度曲线非常相似,变化趋势基本保持一致。 2) 总加速度曲线(AVM)中存在明显峰值,该峰值是由身体与地面冲击导致的。 3) 总加速度曲线(AVM)中峰值之前时刻,相应的竖直加速度曲线(Ax)存在一个明显的加速度谷值,该谷值是由身体在跌倒过程中的失重导致的。 4) 总加速度曲线(AVM)中峰值之后一段时间,相应的竖直加速度曲线(Ax)存在一个明显“阶跃”变化,这是由于人体姿态变化导致的。 图12 常见跌倒事件的总加速度(黑色)与竖直轴加速度曲线(蓝色) 比较平常行为和跌倒事件的和加速曲线(AVM)特性可知,两者总加速度(AVM)峰值的大小存在明显差异。通过大量模拟跌倒和平常行为实验,记录汇总后,跌倒和平常行为的总加速度峰值范围如表6和表7所示。 表1 平常行为总加速度最值 ADL 行走 坐 蹲 上楼 下楼 慢跑 跳 Max(g) 1.88 1.54 1.75 1.78 1.98 4.5 3.11 Min(g) 1.55 1.47 1.05 1.12 1.54 2.78 3.61 表2 跌倒总加速度最大值范围 Fall 前倒 后倒 侧倒 Max(g) 5.78 5.68 5.78 Mean(g) 4.98 4.45 4.37 Min(g) 4.76 4.82 4.45 4.1.3 姿态分析 人体处在静止状态时,可以通过重力加速度在三个方向的分布估计人体姿态,仅需加速度传感器支持,且计算简朴。 图13显示了跌倒事件中竖直方向加速度的变化,通过重力加速度的分布变化,同时也反映了人体姿态的变化。在人体直立时,竖直方向加速度为-1g(正方向为垂直地面向上),而在人体平躺时,竖直方向加速度为0g左右。从而,该曲线体现了在跌倒过程中人体姿态的典型变化:在失重阶段人体与竖直轴夹角由0°左右快速变为90°左右,随后在平躺阶段时,人体与竖直轴夹角保持90°左右一段时间。虽然跌倒时人体姿态变化与躺下的情况一致,但是足以区分其他平常行为。 图15 跌倒时竖直方向加速度曲线 4.2 跌倒检测算法设计 通过以上对平常行为和跌倒的加速度和人体姿态分析可知,跌倒可以分为三个阶段,第一阶段是失重阶段,此时人体开始无意识的倒向地面;第二阶段是冲击阶段,此时人体其他部位与地面发生冲击;第三阶段是平躺阶段,此时人体平躺在地面上处在静息状态。并且,跌倒过程中突出的特性可以归结为(如图16所示): 1) 在人体处在失重阶段时,竖直轴加速度(Ay)先下降再急剧增长。 2) 在人体承受冲击阶段时,总加速度的激增。 3) 冲击之后,由于人体姿态变化而处在平躺状态,总加速度(AVM)维持在1g左右,Y轴加速度维持在0g附近。 图16 跌倒的运动学特性 经采样分析平常行为事件几乎不能同时满足以上3个特性,这为该跌倒检测系统具有较高的特异性提供了保障。为有效辨认以上3个特性,我们通过总加速度(AVM)与人体与竖直轴夹角(TAy)的变化时序来设计跌倒检测算法。总加速度(AVM)的定义已经在前文加速度分析中给出,而在人体处在静息状态时(非运动状态),竖直轴夹角(TAy)的计算采用重力加速度分布的方法估算,其公式如下: (5.2) 其中TAy表达人体与竖直轴夹角,单位为deg;Ay表达竖直轴加速度,单位为m/s2;G表达重力加速度,单位为m/s2。 基于以上分析和大量实验,总结出以下跌倒检测算法,其流程图如图17所示。该算法的核心思想是加速度阈值判断结合人体姿态检测,因此需要定义三个阈值用于评估人体运动剧烈状态和人体姿态:HAT为加速度高阈值,当AVM大于HAT时,说明人体受到强烈冲击。LAT为加速度低阈值,当AVM小于LAT时,说明人体处在不活跃状态。AT为角度阈值,当TAy绝对值小于AT时,说明人体处在平躺状态。此外,还需要定义三个延时用来控制不同阈值检测的时序。所有阈值和延时都通过大量平常行为和模拟跌倒实验调校和验证。 图17 跌倒检测算法流程图 其重要流程描述如下: 1) 三轴加速度传感器的测量采样频率为200Hz。 2) 每次采样后有三轴加速度计算总加速度AVM。 3) 设定总加速度高阈值HAT,若检测到AVM > HAT,说明存在强烈冲击,继续判断。 4) 设定总加速度低阈值LAT,若3s内检测AVM < LAT ,说明人体处在静息状态,继续判断。 5) 若以上条件满足,则通过三轴加速度分布进行姿态判断,延时循环两次,若|TAy| < AT,则为接近水平状态,鉴定跌倒。 5 实验验证 跌倒检测的目的是在于准确区分平常行为和跌倒事件,因此跌倒检测实验也是围绕这两种行为展开的。实验内容是:志愿者按照规定执行相应的平常行为和模拟跌倒事件。 5.1 跌倒检测实验设计 跌倒检测的实验项目也借鉴了之前N.Noury的关于跌倒检测准确性的评估[37]。综合常见的平常行为和跌倒事件,在该实验中志愿者执行的项目如表3所示。 表3 跌倒检测实验项目 实验项目 项目细分 报警种类 向后跌倒 以坐姿结束 是 以平卧结束 是 以侧卧结束 是 快速恢复 否 向前跌倒 膝盖着地 是 胳膊着地 是 以平卧结束 是 倒后翻滚以平卧结束 是 倒后翻滚以侧卧结束 是 快速恢复 否 左侧跌倒 以平卧结束 是 快速恢复 否 右侧跌倒 以平卧结束 是 快速恢复 否 晕厥 沿墙跌坐 是 平常行为 坐 – 起立 否 躺 – 起立 否 行走 否 弯腰拾物 否 咳嗽或打喷嚏 否 6.4.2 跌倒检测实验结果 通过志愿者总共1000次行为模拟,其中涉及400次模拟跌倒和600次模拟平常行为,跌倒检测的检测准确率记录如表13所示。 表13 跌倒检测实验结果记录 行为种类 实验次数 报警次数 未报警次数 准确率 平常行为 500 0 500 100% 向前跌倒 100 99 0 99% 向后跌倒 100 100 0 100% 向左跌倒 100 94 6 94% 向右跌倒 100 95 5 95% 由于跌倒检测的输出只有跌倒报警和未报警两个值,因此跌倒检测的准确性可以由以下四种情况发生的概率来评价。 1) 真阳性事件(true positive, TP),即跌倒的确发生,并且跌倒报警发出。 2) 假阳性事件(false positive, FP),即跌倒没有发生,而跌倒报警发出。 3) 真阴性事件(true negative, TN),即跌倒没有发生,并且没有跌倒报警。 4) 假阴性事件(false negative, FN),即跌倒的确发生,而没有跌倒报警。 因此,跌倒检测的准确性可以通过以下两个指标来评价: 1) 检测敏感性,即在所有跌倒事件中,成功检测出跌倒的比率,与其相反的为漏警率。其计算公式如下: (6.1) 2) 检测特异性,即在所有平常行为事件中,成功检测出未跌倒的比率,与其相反的为虚警率。其计算公式如下: (6.2) 其中,TP,FP分别真阳性和假阳性事件,TN,FN分别真阴性和假阴性事件。由于在跌倒检测实验中,所有平常行为事件都被准确检测出,因此假阳性事件为零,说明该跌倒检测算法具有很高的特异性(在实验中为100%)。同时,由于存在小部分跌倒事件没有被成功检测出,即检测存在假阴性事件,但是该情况发生概率很小(见表13),因此该跌倒检测算法同样具有很高的敏感性(在实验中大于95%)。 参考文献 [1] . 联合国人口司. 联合国老龄化议题-老龄化问题概况[EB/OL], , 2023-03-09 [2] 国务院新闻办. 2023年第六次全国人口普查重要数据公报[EB/OL], , 2023-04-28 [3] 吕筠, 李立明. 老年伤害研究回顾[J]. 疾病控制杂志, 1999, 3(4): 300-303 [4] 郝晓宁, 胡鞍钢. 中国人口老龄化: 健康不安全及应对政策[J]. 中国人口. 资源与环境, 2023, 2(3): 73-78 [5] Wu G. Distinguishing fall activities from normal activities by velocity characteristics[J]. Journal of Biomechanics, 2023, 33:1497-1500 [6] Nait-Charif H., Mckenna S. J. Activity Summarisation and Fall Detection in a Supportive Home Environment[A]. Pattern Recognition, 2023, ICPR 2023, Proceedings of the 17th International Conference on IEEE[C], 2023:323 [7] Noury, N., Hervé, T., Rialle, V., et al. Monitoring behavior in home using a smart fall sensor and position sensors[A]. Microtechnologies in Medicine and Biology, 1st Annual International Conference on IEEE[C], 2023:607 [8] Mathie, M., Celler, B., Lovell, N.H., et al. Classification of basic daily movements using a triaxial accelerometer[J]. Medical and Biological Engineering and Computing, 2023, vol. 42, no. 5:679-687 [9] Hwang, J., Kang, J., Jang, Y., et al. Development of novel algorithm and real-time monitoring ambulatory system using Bluetooth module for fall detection in the elderly[A]. Engineering in Medicine and Biology Society, IEMBS'04, 26th Annual International Conference of the IEEE[C], 2023:2204 [10] Bourke, A., Lyons, G. A threshold-based fall-detection algorithm using a bi-axial gyroscope sensor[J]. Medical engineering & physics, 2023, vol. 30, no. 1:84-90 [11] Tamura, T., Yoshimura, T., Sekine, M., et al. A Wearable Airbag to Prevent Fall Injuries[J]. IEEE Transaction on Information Technology in Biomedicine, 2023, vol. 13, no. 6:910-914. [12] Williams, G., Doughty, K., Cameron, K., et al. A smart fall and activity monitor for telecare applications[A]. Engineering in Medicine and Biology Society, Proceedings of the 20th Annual International Conference of the IEEE[C], 1998:1151 [13] Doughty, K., Lewis, R., McIntosh, A. The design of a practical and reliable fall detector for community and institutional telecare[J]. Journal of telemedicine and telecare, 2023, vol. 6, no. suppl 1:150-154 [14] Lindemann, U., Hock, A., Stuber, M., et al. Evaluation of a fall detector based on accelerometers: A pilot study[J]. Medical and Biological Engineering and Computing, 2023, vol. 43, no. 5:548-551 [15] Gibson, M.J. The prevention of falls in later life. A report of the Kellogg International Work Group on the Prevention of Falls by the Elderly[R]. Danish Medical Bulletin, 1987, 34(Suppl. 4):1–24 [16] Noury N., Rumeau P., Bourke A.K., et al. A proposal for the classification and evaluation of fall detectors[J]. IRBM, 2023, 29:340-349 [17] National Institute for Clinical Excellence(NICE). Clinical practice guideline for the assessment and prevention of falls in older people[M]. London: the Royal College of Nuring, 2023 [18] 马敬东, 刘筱娴. 老年人骨折发生的危险因素[J]. 国外医学社会医学分册, 2023, 19(6):70 [19] Goebel, J.A., Birge, S.J., Price, S.C., et al. Estrogen replacement therapy and postural stability in the elderly[J]. The American Journal of Otology, 1995, vol. 16, no. 4:470 [20] Kerber, K.A., Enrietto, J.A., Jacobson, K.M., et al. Disequilibrium in older people[J]. Neurology, 1998, vol. 51, no. 2:574-580 [21] 张健, 伍爱婵. 广州l3个城区老年人跌倒的因素分析[J]. 疾病控制杂志, 2023, 9(5):257 [22] O'Neill, T., Varlow, J., Silman, A., et al. Age and sex influences on fall characteristics[J]. Annals of the Rheumatic Diseases,1994, vol. 53, no. 11:773-7展开阅读全文
咨信网温馨提示:1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。




老年人跌倒检测技术研究.doc



实名认证













自信AI助手
















微信客服
客服QQ
发送邮件
意见反馈



链接地址:https://www.zixin.com.cn/doc/3355277.html