工业催化文献综述.doc
《工业催化文献综述.doc》由会员分享,可在线阅读,更多相关《工业催化文献综述.doc(10页珍藏版)》请在咨信网上搜索。
1、工业催化文献综述固体酸催化剂的发展及应用 专业:化学工程与工艺 班级: 学生学号: 学生姓名: 完成时间:1一、 引言催化剂(catalyst):是一种能够改变化学反应速度,而它本身又不参与最终产物的物质。:随着环境意识的加强以及环境保护要求的日益严格,液体催化剂已完全满足不了化工产品的发展要求,然而新型固体酸催化剂却弥补了当前的一些不足,固体酸催化剂已成为催化化学的一个研究热点。与液体酸催化剂相比,固体酸催化反应具有明显的优势,固体酸催化在工艺上容易实现连续生产,不存在产物与催化剂的分离及对设备的腐蚀等问题。并且固体酸催化剂的活性高,可在高温下反应,能大大提高生产效率。还可扩大酸催化剂的应用
2、领域,易于与其他单元过程耦合形成集成过程,节约能源和资源。关键词:固体酸催化剂摘要:通过固体孙催化剂在有机合成反应中的应用,说明固体酸催化剂的优越性,介绍了固体酸催化剂技术应用的进展,指出了固体酸催化剂应用存在的主要问题1固体酸催化剂的定义及分类1.1定义一般而言,固体酸可理解为凡能碱性指示剂改变颜色的固体,或是凡能化学吸附碱性物质的固体。按照布朗斯泰德和路易斯的定义,则固体酸是具有给出质子或接受电子对能力的固体。固体酸是催化剂中的一类重要催化剂,催化功能来源于固体表面上存在的具有催化活性的酸性部位,称酸中心。它们多数为非过渡元素的氧化物或混合氧化物,其催化性能不同于含过渡元素的氧化物催化剂。
3、这类催化剂广泛应用于离子型机理的催化反应,种类很多。此外,还有润载型固体酸催化剂,是将液体酸附载于固体载体上而形成的,如固体磷酸催化剂。1.2固体酸的分类(1)固载化液体酸 HF/Al2O3,BF3/AI2O3,H3PO4/硅藻土 (2)氧化物简单 Al2O3,SiO2,B2O3,Nb2O5 复合 Al2O3-SiO2,Al2O3/B2O3 (3)硫化物 CdS ZnS 2(4)金属磷酸盐 AlPO4,BPO 硫酸盐 Fe2(SO4)3,Al2(SO4)3,CuSO4 (5)沸石分子筛 ZSM-5沸石,X沸石,Y沸石,B沸石 丝光沸石,非沸石分子筛:AlPOSAPO系列 (6)杂多酸 H3PW
4、12O40,H4SiW12O40,H3PMo12O40 (7)阳离子交换树脂 苯乙烯-二乙烯基苯共聚物Nafion-H (8)天然粘土矿 高岭土,膨润土,蒙脱土 (9)固体超强酸 SO42-/ZrO2,WO3/ZrO2,MoO3/ZrO2,B2O3二、主题1各类固体酸催化剂的研究近况以下主要是综述了固体超强酸(H0-11.94)的研究发展状况,包括了单组分固体超强酸催化剂和多组分复合固体酸催化剂的研究。1.1单组分固体超强酸苏文悦、陈亦琳等人1对SO2-4/TiO2进行了研究,发现SO2-4/TiO2固体酸可用于光催化降解溴代甲烷。当H2SO4浸渍液浓度为1mol/L时,制备所得的SO2-4/
5、TiO2酸性最强(H0-12.14),具有超强酸性和最高的光催化活性,且比在相同反应条件下的TiO2的光催化活性提高了210倍。任立国等人2制备了PO3-4/TiO2固体酸,对其进行了表征,并催化了乙酰乙酸乙酯和乙二醇的缩酮化反应。研究结果表明,经PO3-4改性后的TiO2在425!575!焙烧可形成表面同时存在L酸中心和B酸中心的固体超强酸。在缩酮化反应中,PO3-4质量分数为7.5%、焙烧温度为500!的固体酸催化剂具有最高催化活性。 于荟、朱银华等人3采用等体积浸渍法制备了新型晶须状介孔SO2-4/TiO2固体酸,以其为催化剂催化乙酸和正丁醇的酯化反应。经一系列物化表征后显示,SO2-4
6、/TiO2固体酸具有纳米级晶粒、晶须状形貌、高比表面积和介孔结构,500!焙烧时催化剂活性最高。酯化反应中,在催化剂的投入质量为0.2g、n(正丁醇)/n(乙酸)=1.5、反应时间为3h的条件下,正丁醇转化率可达94%。1.2多组分复合超强酸复合其他金属氧化物型李文生,尹双凤等人4制备了经高温活化焙烧的B2O3/ZrO2催化剂。表征后得出,对于700!活化焙烧的B2O3/ZrO2,B2O3的含量为4.1%比表面最大,而B2O3的含量为8.3%时催化剂表面的总酸量最大。实验还3表明催化剂表面B/Zr原子之比中强酸百分含量间存在顺变关系,而且中强酸中心是催化环己酮肟贝克曼重排的活性中心。郭锡坤、王
7、小明5以-Al2O3为载体,用分步浸渍法制得Cu/ZrO2/S2O2-8/-Al2O3固体酸,用于催化选择还原NO的反应。实验表明,由于S2O2-8和ZrO2可抑制-Al2O颗粒的烧结及CuAl2O4尖晶石相的生成,且促使催化剂表面B酸中心的形成,在有10%水蒸气存在时NO的最大转化率还能达80.2%。 1.3磁性复合型常铮、李峰等人6利用超声波法制得磁性纳米固体酸催化剂Zr(SO4)2/Fe3O4,并对不同配比的催化剂进行表征。当Fe3+/Fe2+的摩尔比为5.5,NaOH的浓度为0.1mol/L时,制出的纳米级磁基体磁性相对最强、颗粒大小均匀。当Zr(SO4)2/Fe3O4的摩尔比降低时,
8、酯化时的催化活性降低,但催化剂的磁性增强,即其回收率增大。常铮、郭灿雄等人7制备出磁性超细固体酸SO2-4-ZrO2/Fe3O4,并用于催化乙酸丁酯的合成反应。经实验表征后发现,磁基体的平均粒径为40nm,催化剂在650!条件下焙烧,部分Fe3O4会转化为Fe2O3,使整体磁学性能下降。但650!处理的SO2-4-ZrO2/Fe3O4(51)催化剂虽然比表面积降低到60.8m2/g左右,酸性却增强,催化活性也上升。王君8设计合成了SO2-4/ZrO2/Fe3O4/Al2O3、SO2-4/ZrO2/Fe3O4/TiO2、SO2-4/ZrO2/Fe3O4/B2O3和SO2-4/ZrO2/Fe3O4
9、/WO3四种固体酸催化剂,并依次作为合成柠檬酸三丁酯、乙酸乙酯、乙酸丁酯和苹果酯的催化剂。分析结果显示,Al2O3、TiO2与Fe3O4的引入均能抑制ZrO2(t)向ZrO2(m)转变,有效抑制晶粒生成,提高酸性;B2O3在高温烧结中起钉扎作用,阻碍晶界的移动,同样抑制晶粒生成;WO3与Fe3O4的引入能使ZrO2在较高的焙烧温度下保持ZrO2(t),利于形成酸中心。1.4复合稀土元素及交联剂负载型华平、李建华等人9合成了稀土复合型的SO2-4/TiO2/La3+固体酸,且用于催化合成马来酸二辛脂。经考察得出,当Ti/La的物质量之比为61,用于浸渍的硫酸浓度为1.8mol/L时,550!焙烧
10、的催化剂活性最高,酯化率可达96.9%。4陈同云10用共沉淀法制得了引入稀土元素钕的固体超强酸SO2-4/ZrO2-Nd2O3,将其用于催化乙酸和甘油的酯化反应。实验结果显示,-15!陈化、650!焙烧、Zr/Nd的物质量之比为1001时,催化剂酸度最强(H0=-16.0),酯化率达95%以上。低温陈化和Nd的加入使催化剂的酸性增强,并能使ZrO2四方晶相在较宽的温度范围内不发生转化。郭锡坤、谌宁11以累托土为基质,采用四种不同的方法:(1)向Zr交联剂中引入La;(2)在未焙烧的Zr-CLR中引入La(3)在焙烧后的Zr-CLR中引入La;(4)先用La与Na-R进行交换再加入Zr交联剂,分
11、别制备了不同的含La的SO2-4改性Zr交联粘土固体酸催化剂。结果表明,先用La与Na-R进行交换再加入Zr交联剂,或采用La-Zr双组分与累托土交联所得的固体酸L酸酸量增多,酸强度增强。郭锡坤、张俊豪等人12采用溶胶凝胶法制备了Cu/CeO2/SO2-4/Ti-PLIM固体酸催化剂,并且进行表征。结果表明,钛交联剂能增大交联蒙脱土载体的比表面积,制得的孔径为37nm;SO2-4与钛形成螯合双配位结构,促使了B酸中心的形成,酸量提高;Ce还促使了Cu的还原作用。1.5分子筛负载型陈静、孙蕊等人13采用液相沉积法制备了MCM-41负载S2O2-8/TiO2的固体超强酸,以乙酸和异戊酯的酯化反应考
12、察催化剂的性能。表征显示,催化剂保持了MCM-41的介孔结构,而且促进了S2O2-8酸中心的形成,得到了Ti/Si的物量比为1、0.5mol/LS2O2-8溶液浸渍5h、550!下焙烧4h的最佳工艺条件。肖容华、徐景士14利用混合球磨法将ZSM-5分子筛与研细的Zr(OH)4混合研磨至光滑后按15g/mL硫酸浸泡,焙烧后制得SO2-4/ZrO2-ZSM-5超强酸(H0=-12.70)。m(ZSM-5/ZrO2)=4%,浸渍液H2SO4浓度为1.0mol/L,600!焙烧3h,为较好的催化剂制备条件。ZSM-5的引入有利于表面的晶化,增大催化剂的比表面积,使其活性增强。1.6其他类型固体酸(1)
13、固体杂多酸固体杂多酸催化剂可分为15:(1)纯杂多酸;(2)杂多酸盐;(3)负载型杂多酸(盐)三类。杂多阴离子由不同种类的含氧酸根阴离子缩合而成,杂多酸属于液体酸,具有较强的酸强度。当质子被碱金属阳离子取代形成盐后可作为固体酸使用。为避免杂多酸分解,用于制备负载型杂多酸的5主要是中性和酸性载体。典型的杂多酸型催化剂有Keggin、Dawson、Waugh等结构,其主要差别在于中心原子的配位数和配位体的八面体单元的聚集状态不同16。因为此类型固体酸酸性较强,其在酯化、烷基化等方面的应用研究活跃起来。 王广健、刘广卿等人17用浸渍法和吸附法制备了负载Keggin杂多酸,并对其进行表征,总结了在重排
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 工业 催化 文献 综述
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。